Healthcare NLP v4.0.0 Release Notes

 

4.0.0

Highlights

  • 8 new chunk mapper models and 9 new pretrained chunk mapper pipelines to convert one medical terminology to another (Snomed to ICD10, RxNorm to UMLS etc.)
  • 2 new medical NER models (ner_clinical_trials_abstracts and ner_pathogen) and pretrained NER pipelines
  • 20 new biomedical NER models based on the LivingNER corpus in 8 languages (English, Spanish, French, Italian, Portuguese, Romanian, Catalan and Galician)
  • 2 new medical NER models for Romanian language (ner_clinical, ner_clinical_bert)
  • Deidentification support for Romanian language (ner_deid_subentity, ner_deid_subentity_bert and a pretrained deidentification pipeline)
  • The first public health model: Emotional stress classifier (bert_sequence_classifier_stress)
  • ResolverMerger annotator to merge the results of ChunkMapperModel and SentenceEntityResolverModel annotators
  • New Shortest Context Match and Token Index Features in ContextualParserApproach
  • Prettified relational categories in ZeroShotRelationExtractionModel annotator
  • Create graphs for open source NerDLApproach with the TFGraphBuilder
  • Spark NLP for Healthcare library installation with Poetry (dependency management and packaging tool)
  • Bug fixes
  • Updated notebooks
  • List of recently updated or added models (50+ new medical models and pipelines)

8 New Chunk Mapper Models and 9 New Pretrained Chunk Mapper Pipelines to Convert One Medical Terminology to Another (Snomed to ICD10, RxNorm to UMLS etc.)

We are releasing 8 new ChunkMapperModel models and 9 new pretrained pipelines for mapping clinical codes with their corresponding.

  • Mapper Models:
Mapper Name Source Target
snomed_icd10cm_mapper SNOMED CT ICD-10-CM
icd10cm_snomed_mapper ICD-10-CM SNOMED CT
snomed_icdo_mapper SNOMED CT ICD-O
icdo_snomed_mapper ICD-O SNOMED CT
rxnorm_umls_mapper RxNorm UMLS
icd10cm_umls_mapper ICD-10-CM UMLS
mesh_umls_mapper MeSH UMLS
snomed_umls_mapper SNOMED CT UMLS

Example:

...
snomed_resolver = SentenceEntityResolverModel.pretrained("sbertresolve_snomed_conditions", "en", "clinical/models") \
    .setInputCols(["sbert_embeddings"]) \
    .setOutputCol("snomed_code")\
    .setDistanceFunction("EUCLIDEAN")

chunkerMapper = ChunkMapperModel.pretrained("snomed_icd10cm_mapper", "en", "clinical/models")\
    .setInputCols(["snomed_code"])\
    .setOutputCol("icd10cm_mappings")\
    .setRels(["icd10cm_code"])

pipeline = PipelineModel(
    stages = [
        documentAssembler,
        sbert_embedder,
        snomed_resolver,
        chunkerMapper
        ])

light_pipeline= LightPipeline(pipeline)

result = light_pipeline.fullAnnotate("Radiating chest pain")

Results :

|    | ner_chunk            |   snomed_code | icd10cm_mappings   |
|---:|:---------------------|--------------:|:-------------------|
|  0 | Radiating chest pain |      10000006 | R07.9              |
  • Pretrained Pipelines:
Pipeline Name Source Target
icd10cm_snomed_mapping ICD-10-CM SNOMED CT
snomed_icd10cm_mapping SNOMED CT ICD-10-CM
icdo_snomed_mapping ICD-O SNOMED CT
snomed_icdo_mapping SNOMED CT ICD-O
rxnorm_ndc_mapping RxNorm NDC
icd10cm_umls_mapping ICD-10-CM UMLS
mesh_umls_mapping MeSH UMLS
rxnorm_umls_mapping RxNorm UMLS
snomed_umls_mapping SOMED CT UMLS

Example:

from sparknlp.pretrained import PretrainedPipeline

pipeline= PretrainedPipeline("rxnorm_umls_mapping", "en", "clinical/models")
result= pipeline.annotate("1161611 315677")

Results :

{'document': ['1161611 315677'],
 'rxnorm_code': ['1161611', '315677'],
 'umls_code': ['C3215948', 'C0984912']}

2 New Medical NER Models (ner_clinical_trials_abstracts and ner_pathogene) and Pretrained NER Pipelines

  • ner_clinical_trials_abstracts: This model can extract concepts related to clinical trial design, diseases, drugs, population, statistics and publication. It can detect Age, AllocationRatio, Author, BioAndMedicalUnit, CTAnalysisApproach, CTDesign, Confidence, Country, DisorderOrSyndrome, DoseValue, Drug, DrugTime, Duration, Journal, NumberPatients, PMID, PValue, PercentagePatients, PublicationYear, TimePoint, Value entities.

See Model Hub Page for details.

Example :

...
clinical_ner = MedicalNerModel.pretrained("ner_clinical_trials_abstracts", "en", "clinical/models") \
      .setInputCols(["sentence", "token", "embeddings"]) \
      .setOutputCol("ner_tags")
...

sample_text = "A one-year, randomised, multicentre trial comparing insulin glargine with NPH insulin in combination with oral agents in patients with type 2 diabetes."
  • bert_token_classifier_ner_clinical_trials_abstracts: This model is the BERT-based version of ner_clinical_trials_abstracts model and it can detect Age, AllocationRatio, Author, BioAndMedicalUnit, CTAnalysisApproach, CTDesign, Confidence, Country, DisorderOrSyndrome, DoseValue, Drug, DrugTime, Duration, Journal, NumberPatients, PMID, PValue, PercentagePatients, PublicationYear, TimePoint, Value entities.

See Model Hub Page for details.

Example :

...
tokenClassifier = MedicalBertForTokenClassifier.pretrained("bert_token_classifier_ner_clinical_trials_abstracts", "en", "clinical/models")\
       .setInputCols("token", "sentence")\
       .setOutputCol("ner")\
       .setCaseSensitive(True)
...

sample_text = "A one-year, randomised, multicentre trial comparing insulin glargine with NPH insulin in combination with oral agents in patients with type 2 diabetes."
  • ner_clinical_trials_abstracts_pipeline: This pretrained pipeline is build upon the ner_clinical_trials_abstracts model and it can extract Age, AllocationRatio, Author, BioAndMedicalUnit, CTAnalysisApproach, CTDesign, Confidence, Country, DisorderOrSyndrome, DoseValue, Drug, DrugTime, Duration, Journal, NumberPatients, PMID, PValue, PercentagePatients, PublicationYear, TimePoint, Value entities.

See Model Hub Page for details.

Example :

pipeline = PretrainedPipeline("ner_clinical_trials_abstracts_pipeline", "en", "clinical/models")

result = pipeline.fullAnnotate("A one-year, randomised, multicentre trial comparing insulin glargine with NPH insulin in combination with oral agents in patients with type 2 diabetes.")

Results :

+----------------+------------------+
|           chunk|         ner_label|
+----------------+------------------+
|      randomised|          CTDesign|
|     multicentre|          CTDesign|
|insulin glargine|              Drug|
|     NPH insulin|              Drug|
| type 2 diabetes|DisorderOrSyndrome|
+----------------+------------------+
  • ner_pathogen: This model is trained for detecting medical conditions (influenza, headache, malaria, etc), medicine (aspirin, penicillin, methotrexate) and pathogenes (Corona Virus, Zika Virus, E. Coli, etc) in clinical texts. It can extract Pathogen, MedicalCondition, Medicine entities.

See Model Hub Page for details.

Example :

...
clinical_ner = MedicalNerModel.pretrained("ner_pathogen", "en", "clinical/models") \
      .setInputCols(["sentence", "token", "embeddings"]) \
      .setOutputCol("ner")
...

sample_text = "Racecadotril is an antisecretory medication and it has better tolerability than loperamide. Diarrhea is the condition of having loose, liquid or watery bowel movements each day. Signs of dehydration often begin with loss of the normal stretchiness of the skin. While it has been speculated that rabies virus, Lyssavirus and Ephemerovirus could be transmitted through aerosols, studies have concluded that this is only feasible in limited conditions."
  • ner_pathogen_pipeline: This pretrained pipeline is build upon the ner_pathogen model and it can extract Pathogen, MedicalCondition, Medicine entities.

See Model Hub Page for details.

Example :

pipeline = PretrainedPipeline("ner_pathogen_pipeline", "en", "clinical/models")

result = pipeline.fullAnnotate("Racecadotril is an antisecretory medication and it has better tolerability than loperamide. Diarrhea is the condition of having loose, liquid or watery bowel movements each day. Signs of dehydration often begin with loss of the normal stretchiness of the skin. While it has been speculated that rabies virus, Lyssavirus and Ephemerovirus could be transmitted through aerosols, studies have concluded that this is only feasible in limited conditions.")

Results :

+---------------+----------------+
|chunk          |ner_label       |
+---------------+----------------+
|Racecadotril   |Medicine        |
|loperamide     |Medicine        |
|Diarrhea       |MedicalCondition|
|dehydration    |MedicalCondition|
|rabies virus   |Pathogen        |
|Lyssavirus     |Pathogen        |
|Ephemerovirus  |Pathogen        |
+---------------+----------------+
  • ner_biomedical_bc2gm_pipeline : This pretrained pipeline can extract genes/proteins from medical texts by labelling them as GENE_PROTEIN.

See Model Hub Page for details.

Example :

pipeline = PretrainedPipeline("ner_biomedical_bc2gm_pipeline", "en", "clinical/models")

result = pipeline.fullAnnotate("""Immunohistochemical staining was positive for S-100 in all 9 cases stained, positive for HMB-45 in 9 (90%) of 10, and negative for cytokeratin in all 9 cases in which myxoid melanoma remained in the block after previous sections.""")

Results :

+-----------+------------+
|chunk      |ner_label   |
+-----------+------------+
|S-100      |GENE_PROTEIN|
|HMB-45     |GENE_PROTEIN|
|cytokeratin|GENE_PROTEIN|
+-----------+------------+

20 New Biomedical NER Models Based on the [LivingNER corpus] in 8 Languages

  • We are releasing 20 new NER and MedicalBertForTokenClassifier models for *English, French, Italian, Portuguese, Romanian, Catalan and Galician languages that are trained on the LivingNER multilingual corpus and for Spanish that is trained on LivingNER corpus is composed of clinical case reports extracted from miscellaneous medical specialties including COVID, oncology, infectious diseases, tropical medicine, urology, pediatrics, and others. These models can detect living species as HUMAN and SPECIES entities in clinical texts.

Here is the list of model names and their embeddings used while training:

Language Annotator Embeddings Model Name
es MedicalBertForTokenClassification   bert_token_classifier_ner_living_species
es MedicalNerModel bert_base_cased_es ner_living_species_bert
es MedicalNerModel roberta_base_biomedical_es ner_living_species_roberta
es MedicalNerModel embeddings_scielo_300d_es ner_living_species_300
es MedicalNerModel w2v_cc_300d_es ner_living_species
en MedicalBertForTokenClassification   bert_token_classifier_ner_living_species
en MedicalNerModel embeddings_clinical_en ner_living_species
en MedicalNerModel biobert_pubmed_base_cased_en ner_living_species_biobert
fr MedicalNerModel w2v_cc_300d_fr ner_living_species
fr MedicalNerModel bert_embeddings_bert_base_fr_cased ner_living_species_bert
pt MedicalBertForTokenClassification   bert_token_classifier_ner_living_species
pt MedicalNerModel w2v_cc_300d_pt ner_living_species
pt MedicalNerModel roberta_embeddings_BR_BERTo_pt ner_living_species_roberta
pt MedicalNerModel biobert_embeddings_biomedical_pt ner_living_species_bert
it MedicalBertForTokenClassification   bert_token_classifier_ner_living_species
it MedicalNerModel bert_base_italian_xxl_cased_it ner_living_species_bert
it MedicalNerModel w2v_cc_300d_it ner_living_species
ro MedicalNerModel bert_base_cased_ro ner_living_species_bert
cat MedicalNerModel w2v_cc_300d_cat ner_living_species
gal MedicalNerModel w2v_cc_300d_gal ner_living_species

Example :

...
clinical_ner = MedicalNerModel.pretrained("ner_living_species", "en", "clinical/models") \
      .setInputCols(["sentence", "token", "embeddings"]) \
      .setOutputCol("ner_tags")
...

results = ner_model.transform(spark.createDataFrame([["""Patient aged 61 years; no known drug allergies, smoker of 63 packs/year, significant active alcoholism, recently diagnosed hypertension. He came to the emergency department approximately 4 days ago with a frontal headache coinciding with a diagnosis of hypertension, for which he was started on antihypertensive treatment. The family reported that they found him "slower" accompanied by behavioural alterations; with no other accompanying symptoms.Physical examination: Glasgow Glasgow 15; neurological examination without focality except for bradypsychia and disorientation in time, person and space. Afebrile. BP: 159/92; heart rate 70 and O2 Sat: 93%; abdominal examination revealed hepatomegaly of two finger widths with no other noteworthy findings. CBC: Legionella antigen and pneumococcus in urine negative."""]], ["text"]))

Results :

+------------+-------+
|ner_chunk   |label  |
+------------+-------+
|Patient     |HUMAN  |
|family      |HUMAN  |
|person      |HUMAN  |
|Legionella  |SPECIES|
|pneumococcus|SPECIES|
+------------+-------+

2 New Medical NER Models for Romanian Language

We trained ner_clinical and ner_clinical_bert models that can detect Measurements, Form, Symptom, Route, Procedure, Disease_Syndrome_Disorder, Score, Drug_Ingredient, Pulse, Frequency, Date, Body_Part, Drug_Brand_Name, Time, Direction, Dosage, Medical_Device, Imaging_Technique, Test, Imaging_Findings, Imaging_Test, Test_Result, Weight, Clinical_Dept and Units entities in Romanian clinical texts.

  • ner_clinical: This model is trained with w2v_cc_300d embeddings model.

Example :

...
embeddings = WordEmbeddingsModel.pretrained("w2v_cc_300d","ro")\
        .setInputCols(["sentence","token"])\
        .setOutputCol("word_embeddings")

clinical_ner = MedicalNerModel.pretrained("ner_clinical", "ro", "clinical/models")\
        .setInputCols(["sentence","token","word_embeddings"])\
        .setOutputCol("ner")
...

sample_text = "Aorta ascendenta inlocuita cu proteza de Dacron de la nivelul anulusului pana pe segmentul ascendent distal pe o lungime aproximativa de 75 mm."
  • ner_clinical_bert: This model is trained with bert_base_cased embeddings model.

Example :

 ...
 embeddings = BertEmbeddings.pretrained("bert_base_cased", "ro")\
        .setInputCols(["sentence","token"])\
        .setOutputCol("word_embeddings")

clinical_ner = MedicalNerModel.pretrained("ner_clinical_bert", "ro", "clinical/models")\
        .setInputCols(["sentence","token","word_embeddings"])\
        .setOutputCol("ner")
...

sample_text = "Aorta ascendenta inlocuita cu proteza de Dacron de la nivelul anulusului pana pe segmentul ascendent distal pe o lungime aproximativa de 75 mm."

Results :

+-------------------+--------------+
|             chunks|      entities|
+-------------------+--------------+
|   Aorta ascendenta|     Body_Part|
|  proteza de Dacron|Medical_Device|
|         anulusului|     Body_Part|
|segmentul ascendent|     Body_Part|
|             distal|     Direction|
|                 75|  Measurements|
|                 mm|         Units|
+-------------------+--------------+

Deidentification Support for Romanian Language (ner_deid_subentity, ner_deid_subentity_bert and a Pretrained Deidentification Pipeline)

We trained two new NER models to find PHI data (protected health information) that may need to be deidentified in Romanian. ner_deid_subentity and ner_deid_subentity_bert models are trained with in-house annotations and can detect 17 different entities (AGE, CITY, COUNTRY, DATE, DOCTOR, EMAIL, FAX, HOSPITAL, IDNUM, LOCATION-OTHER, MEDICALRECORD, ORGANIZATION, PATIENT, PHONE, PROFESSION, STREET, ZIP).

  • ner_deid_subentity: This model is trained with w2v_cc_300d embeddings model.

See Model Hub Page for details.

Example :

...
embeddings = WordEmbeddingsModel.pretrained("w2v_cc_300d","ro")\
        .setInputCols(["sentence","token"])\
        .setOutputCol("word_embeddings")

clinical_ner = MedicalNerModel.pretrained("ner_deid_subentity", "ro", "clinical/models")\
        .setInputCols(["sentence","token","word_embeddings"])\
        .setOutputCol("ner")
...

sample_text = """
Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
Tel: +40(235)413773
Data setului de analize: 25 May 2022 15:36:00
Nume si Prenume : BUREAN MARIA, Varsta: 77
Medic : Agota Evelyn Tımar
C.N.P : 2450502264401"""
  • ner_deid_subentity_bert: This model is trained with bert_base_cased embeddings model.

See Model Hub Page for details.

Example :

 ...
 embeddings = BertEmbeddings.pretrained("bert_base_cased", "ro")\
        .setInputCols(["sentence","token"])\
        .setOutputCol("word_embeddings")

clinical_ner = MedicalNerModel.pretrained("ner_deid_subentity_bert", "ro", "clinical/models")\
        .setInputCols(["sentence","token","word_embeddings"])\
        .setOutputCol("ner")
...

text = """
Spitalul Pentru Ochi de Deal, Drumul Oprea Nr. 972 Vaslui, 737405 România
Tel: +40(235)413773
Data setului de analize: 25 May 2022 15:36:00
Nume si Prenume : BUREAN MARIA, Varsta: 77
Medic : Agota Evelyn Tımar
C.N.P : 2450502264401"""

Results :

+----------------------------+---------+
|chunk                       |ner_label|
+----------------------------+---------+
|Spitalul Pentru Ochi de Deal|HOSPITAL |
|Drumul Oprea Nr             |STREET   |
|Vaslui                      |CITY     |
|737405                      |ZIP      |
|+40(235)413773              |PHONE    |
|25 May 2022                 |DATE     |
|BUREAN MARIA                |PATIENT  |
|77                          |AGE      |
|Agota Evelyn Tımar          |DOCTOR   |
|2450502264401               |IDNUM    |
+----------------------------+---------+
  • clinical_deidentification: This pretrained pipeline that can be used to deidentify PHI information from Romanian medical texts. The PHI information will be masked and obfuscated in the resulting text. The pipeline can mask and obfuscate ACCOUNT, PLATE, LICENSE, AGE, CITY, COUNTRY, DATE, DOCTOR, EMAIL, FAX, HOSPITAL, IDNUM, LOCATION-OTHER, MEDICALRECORD, ORGANIZATION, PATIENT, PHONE, PROFESSION, STREET, ZIP entities.

See Model Hub Page for details.

Example :

from sparknlp.pretrained import PretrainedPipeline
deid_pipeline = PretrainedPipeline("clinical_deidentification", "ro", "clinical/models")

text = "Varsta : 77, Nume si Prenume : BUREAN MARIA, Data setului de analize: 25 May 2022, Licență : B004256985M, Înmatriculare : CD205113, Cont : FXHZ7170951927104999"

result = deid_pipeline.annotate(text)

print("\nMasked with entity labels")
print("-"*30)
print("\n".join(result['masked']))
print("\nMasked with chars")
print("-"*30)
print("\n".join(result['masked_with_chars']))
print("\nMasked with fixed length chars")
print("-"*30)
print("\n".join(result['masked_fixed_length_chars']))
print("\nObfuscated")
print("-"*30)
print("\n".join(result['obfuscated']))

Results :

Masked with entity labels
------------------------------
Varsta : <AGE>, Nume si Prenume : <PATIENT>, Data setului de analize: <DATE>, Licență : <LICENSE>, Înmatriculare : <PLATE>, Cont : <ACCOUNT>

Masked with chars
------------------------------
Varsta : **, Nume si Prenume : [**********], Data setului de analize: [*********], Licență : [*********], Înmatriculare : [******], Cont : [******************]

Masked with fixed length chars
------------------------------
Varsta : ****, Nume si Prenume : ****, Data setului de analize: ****, Licență : ****, Înmatriculare : ****, Cont : ****

Obfuscated
------------------------------
Varsta : 91, Nume si Prenume : Dragomir Emilia, Data setului de analize: 01-04-2001, Licență : T003485962M, Înmatriculare : AR-65-UPQ, Cont : KHHO5029180812813651

The First Public Health Model: Emotional Stress Classifier

We are releasing a new bert_sequence_classifier_stress model that can classify whether the content of a text expresses emotional stress. It is a PHS-BERT-based model and trained with the Dreaddit dataset.

Example :

...
sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_stress", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("class")

sample_text = "No place in my city has shelter space for us, and I won't put my baby on the literal street. What cities have good shelter programs for homeless mothers and children?"

Results :

+----------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+
|text                                                                                                                                                                  |   class|
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+
|No place in my city has shelter space for us, and I won't put my baby on the literal street. What cities have good shelter programs for homeless mothers and children?|[stress]|
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------+

ResolverMerger Annotator to Merge the Results of ChunkMapperModel and SentenceEntityResolverModel Annotators

ResolverMerger annotator allows to merge the results of ChunkMapperModel and SentenceEntityResolverModel annotators. You can detect your results that fail by ChunkMapperModel with ChunkMapperFilterer and then merge your resolver and mapper results with ResolverMerger.

Example :

...
chunkerMapper = ChunkMapperModel.pretrained("rxnorm_mapper", "en", "clinical/models")\
      .setInputCols(["chunk"])\
      .setOutputCol("RxNorm_Mapper")\
      .setRel("rxnorm_code")

cfModel = ChunkMapperFilterer() \
    .setInputCols(["chunk", "RxNorm_Mapper"]) \
    .setOutputCol("chunks_fail") \
    .setReturnCriteria("fail")
...
resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_rxnorm_augmented", "en", "clinical/models") \
    .setInputCols(["sentence_embeddings"]) \
    .setOutputCol("resolver_code") \
    .setDistanceFunction("EUCLIDEAN")

resolverMerger = ResolverMerger()\
    .setInputCols(["resolver_code","RxNorm_Mapper"])\
    .setOutputCol("RxNorm")
...

Results :

+--------------------------------+-----------------------+---------------+-------------+-------------------------+
|chunk                           |RxNorm_Mapper          |chunks_fail    |resolver_code|RxNorm                   |
+--------------------------------+-----------------------+---------------+-------------+-------------------------+
|[Adapin 10 MG, coumadin 5 mg]   |[1000049, NONE]        |[coumadin 5 mg]|[855333]     |[1000049, 855333]        |
|[Avandia 4 mg, Tegretol, zytiga]|[NONE, 203029, 1100076]|[Avandia 4 mg] |[261242]     |[261242, 203029, 1100076]|
+--------------------------------+-----------------------+---------------+-------------+-------------------------+

New Shortest Context Match and Token Index Features in ContextualParserApproach

We have new functionalities in ContextualParserApproach to make it more performant.

  • setShortestContextMatch() parameter will allow stop looking for matches in the text when a token defined as a suffix is found. Also it will keep tracking of the last mathced prefix and subsequent mathches with suffix.

  • Now the index of the matched token can be found in metadata.

Example :

...
contextual_parser = ContextualParserApproach() \
    .setInputCols(["sentence", "token"])\
    .setOutputCol("entity")\
    .setJsonPath("cities.json")\
    .setCaseSensitive(True)\
    .setDictionary('cities.tsv', options={"orientation":"vertical"})\
    .setShortestContextMatch(True)
...

sample_text = "Peter Parker is a nice guy and lives in Chicago."

Results :

+-------+---------+----------+
|chunk  |ner_label|tokenIndex|
+-------+---------+----------+
|Chicago|City     |9         |
+-------+---------+----------+

Prettified relational categories in ZeroShotRelationExtractionModel annotator

Now you can setRelationalCategories() between the entity labels by using a single {} instead of two.

Example :

re_model = ZeroShotRelationExtractionModel.pretrained("re_zeroshot_biobert", "en", "clinical/models")\
    .setInputCols(["re_ner_chunks", "sentences"]) \
    .setOutputCol("relations")\
    .setRelationalCategories({"ADE": ["{DRUG} causes {PROBLEM}."]})

Create Graphs for Open Source NerDLApproach with the TFGraphBuilder

Now you can create graphs for model training with NerDLApproach by using the new setIsMedical() parameter of TFGraphBuilder annotator. If setIsMedical(True), the model can be trained with MedicalNerApproach, but if it is setIsMedical(False) it can be used with NerDLApproach for training non-medical models.

graph_folder_path = "./graphs"

ner_graph_builder = TFGraphBuilder()\
    .setModelName("ner_dl")\
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setLabelColumn("label")\
    .setGraphFile("auto")\
    .setHiddenUnitsNumber(20)\
    .setGraphFolder(graph_folder_path)\
    .setIsMedical(False)

ner = NerDLApproach() \
    ...
    .setGraphFolder(graph_folder_path)

ner_pipeline = Pipeline()([
    ...,
    ner_graph_builder,
    ner
    ])

Spark NLP for Healthcare Library Installation with Poetry Documentation (dependency management and packaging tool).

We have a new documentation page for showing Spark NLP for Healthcare installation with Poetry. You can find it here.

Bug fixes

  • ContextualParserApproach: Fixed the bug using a dictionary and document rule scope in JSON config file.
  • RENerChunksFilter: Preparing a pretrained pipeline with RENerChunksFilter annotator issue is fixed.

Updated Notebooks

List of Recently Updated and Added Models

  • ner_pathogene
  • ner_pathogen_pipeline
  • ner_clinical_trials_abstracts
  • bert_token_classifier_ner_clinical_trials_abstracts
  • ner_clinical_trials_abstracts_pipeline
  • ner_biomedical_bc2gm_pipeline
  • bert_sequence_classifier_stress
  • icd10cm_snomed_mapper
  • snomed_icd10cm_mapper
  • snomed_icdo_mapper
  • icdo_snomed_mapper
  • rxnorm_umls_mapper
  • icd10cm_umls_mapper
  • mesh_umls_mapper
  • snomed_umls_mapper
  • icd10cm_snomed_mapping
  • snomed_icd10cm_mapping
  • icdo_snomed_mapping
  • snomed_icdo_mapping
  • rxnorm_ndc_mapping
  • icd10cm_umls_mapping
  • mesh_umls_mapping
  • rxnorm_umls_mapping
  • snomed_umls_mapping
  • drug_action_tretment_mapper
  • normalized_section_header_mapper
  • drug_brandname_ndc_mapper
  • abbreviation_mapper
  • rxnorm_ndc_mapper
  • rxnorm_action_treatment_mapper
  • rxnorm_mapper
  • ner_deid_subentity -> ro
  • ner_deid_subentity_bert -> ro
  • clinical_deidentification -> ro
  • ner_clinical -> ro
  • ner_clinical_bert -> ro
  • bert_token_classifier_ner_living_species -> es
  • ner_living_species_bert -> es
  • ner_living_species_roberta -> es
  • ner_living_species_300 -> es
  • ner_living_species -> es
  • bert_token_classifier_ner_living_species -> en
  • ner_living_species -> en
  • ner_living_species_biobert -> en
  • ner_living_species -> fr
  • ner_living_species_bert -> fr
  • bert_token_classifier_ner_living_species -> pt
  • ner_living_species -> pt
  • ner_living_species_roberta -> pt
  • ner_living_species_bert -> pt
  • bert_token_classifier_ner_living_species -> it
  • ner_living_species_bert -> it
  • ner_living_species -> pt
  • ner_living_species_bert -> ro
  • ner_living_species -> ro
  • ner_living_species -> gal

For all Spark NLP for healthcare models, please check: Models Hub Page

Versions

Last updated