Pipeline to Mapping RxNORM Codes with Their Corresponding UMLS Codes

Description

This pretrained pipeline is built on the top of rxnorm_umls_mapper model.

Open in Colab Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("rxnorm_umls_mapping", "en", "clinical/models")

result= pipeline.fullAnnotate("1161611 315677")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("rxnorm_umls_mapping", "en", "clinical/models")

val result= pipeline.fullAnnotate("1161611 315677")
import nlu
nlu.load("en.resolve.rxnorm.umls").predict("""1161611 315677""")

Results

|    | rxnorm_code      | umls_code           |
|---:|:-----------------|:--------------------|
|  0 | 1161611 | 315677 | C3215948 | C0984912 |

Model Information

Model Name: rxnorm_umls_mapping
Type: pipeline
Compatibility: Healthcare NLP 3.5.3+
License: Licensed
Edition: Official
Language: en
Size: 1.9 MB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • ChunkMapperModel