Pipeline to Mapping SNOMED Codes with Their Corresponding ICD10-CM Codes

Description

This pretrained pipeline is built on the top of snomed_icd10cm_mapper model.

Open in Colab Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline= PretrainedPipeline("snomed_icd10cm_mapping", "en", "clinical/models")

result= pipeline.fullAnnotate("128041000119107 292278006 293072005")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline= new PretrainedPipeline("snomed_icd10cm_mapping", "en", "clinical/models")

val result= pipeline.fullAnnotate("128041000119107 292278006 293072005")
import nlu
nlu.load("en.map_entity.snomed_to_icd10cm.pipe").predict("""128041000119107 292278006 293072005""")

Results

|    | snomed_code                             | icd10cm_code               |
|---:|:----------------------------------------|:---------------------------|
|  0 | 128041000119107 | 292278006 | 293072005 | K22.70 | T43.595 | T37.1X5 |

Model Information

Model Name: snomed_icd10cm_mapping
Type: pipeline
Compatibility: Healthcare NLP 3.5.3+
License: Licensed
Edition: Official
Language: en
Size: 1.5 MB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • ChunkMapperModel