Description
This pretrained pipeline is built on the top of snomed_icdo_mapper model.
Available as Private API Endpoint
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("snomed_icdo_mapping", "en", "clinical/models")
result= pipeline.fullAnnotate(["10376009", "2026006", "26638004"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("snomed_icdo_mapping", "en", "clinical/models")
val result= pipeline.fullAnnotate(["10376009", "2026006", "26638004"])
import nlu
nlu.load("en.map_entity.snomed_to_icdo.pipe").predict("""Put your text here.""")
Results
|   | snomed_code | icdo_code |
|--:|------------:|----------:|
| 0 |    10376009 |    8050/2 |
| 1 |     2026006 |    9014/0 |
| 2 |    26638004 |    8322/0 |
Model Information
| Model Name: | snomed_icdo_mapping | 
| Type: | pipeline | 
| Compatibility: | Healthcare NLP 3.5.3+ | 
| License: | Licensed | 
| Edition: | Official | 
| Language: | en | 
| Size: | 208.7 KB | 
Included Models
- DocumentAssembler
- TokenizerModel
- ChunkMapperModel