Pipeline to Mapping SNOMED Codes with Their Corresponding ICDO Codes

Description

This pretrained pipeline is built on the top of snomed_icdo_mapper model.

Open in Colab Copy S3 URI

Available as Private API Endpoint

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("snomed_icdo_mapping", "en", "clinical/models")
result= pipeline.fullAnnotate(["10376009", "2026006", "26638004"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("snomed_icdo_mapping", "en", "clinical/models")

val result= pipeline.fullAnnotate(["10376009", "2026006", "26638004"])
import nlu
nlu.load("en.map_entity.snomed_to_icdo.pipe").predict("""Put your text here.""")

Results

|   | snomed_code | icdo_code |
|--:|------------:|----------:|
| 0 |    10376009 |    8050/2 |
| 1 |     2026006 |    9014/0 |
| 2 |    26638004 |    8322/0 |

Model Information

Model Name: snomed_icdo_mapping
Type: pipeline
Compatibility: Healthcare NLP 3.5.3+
License: Licensed
Edition: Official
Language: en
Size: 208.7 KB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • ChunkMapperModel