Mapping SNOMED Codes with Their Corresponding UMLS Codes

Description

This pretrained model maps SNOMED codes to corresponding UMLS codes under the Unified Medical Language System (UMLS).

Predicted Entities

umls_code

Open in Colab Copy S3 URI

How to use

documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("ner_chunk")

sbert_embedder = BertSentenceEmbeddings\
.pretrained("sbert_jsl_medium_uncased", "en", "clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("sbert_embeddings")

snomed_resolver = SentenceEntityResolverModel\
.pretrained("sbertresolve_snomed_conditions", "en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setOutputCol("snomed_code")\
.setDistanceFunction("EUCLIDEAN")

chunkerMapper = ChunkMapperModel\
.pretrained("snomed_umls_mapper", "en", "clinical/models") \
.setInputCols(["snomed_code"])\
.setOutputCol("umls_mappings")\
.setRels(["umls_code"])


pipeline = Pipeline(stages = [
documentAssembler,
sbert_embedder,
snomed_resolver,
chunkerMapper
])

model = pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))

light_pipeline= LightPipeline(model)

result = light_pipeline.fullAnnotate("Radiating chest pain")
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("ner_chunk")

val sbert_embedder = BertSentenceEmbeddings
.pretrained("sbert_jsl_medium_uncased", "en", "clinical/models")
.setInputCols("ner_chunk")
.setOutputCol("sbert_embeddings")

val snomed_resolver = SentenceEntityResolverModel
.pretrained("sbertresolve_snomed_conditions", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setOutputCol("snomed_code")
.setDistanceFunction("EUCLIDEAN")

val chunkerMapper = ChunkMapperModel
.pretrained("snomed_umls_mapper", "en", "clinical/models")
.setInputCols("snomed_code")
.setOutputCol("umls_mappings")
.setRels(Array("umls_code"))

val pipeline = new Pipeline(stages = Array(
documentAssembler,
sbert_embedder,
snomed_resolver,
chunkerMapper
))

val data = Seq("Radiating chest pain").toDS.toDF("text")

val result= pipeline.fit(data).transform(data)
import nlu
nlu.load("en.snomed_to_umls").predict("""Radiating chest pain""")

Results

|    | ner_chunk            |   snomed_code | umls_mappings   |
|---:|:---------------------|--------------:|:----------------|
|  0 | Radiating chest pain |      10000006 | C0232289        |

Model Information

Model Name: snomed_umls_mapper
Compatibility: Healthcare NLP 3.5.3+
License: Licensed
Edition: Official
Input Labels: [snomed_code]
Output Labels: [mappings]
Language: en
Size: 5.1 MB