Pipeline to Mapping SNOMED Codes with Their Corresponding UMLS Codes

Description

This pretrained pipeline is built on the top of snomed_umls_mapper model.

Open in Colab Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("snomed_umls_mapping", "en", "clinical/models")

result= pipeline.fullAnnotate("733187009 449433008 51264003")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("snomed_umls_mapping", "en", "clinical/models")

val result= pipeline.fullAnnotate("733187009 449433008 51264003")
import nlu
nlu.load("en.resolve.snomed.umls").predict("""733187009 449433008 51264003""")

Results

|    | snomed_code                      | umls_code                      |
|---:|:---------------------------------|:-------------------------------|
|  0 | 733187009 | 449433008 | 51264003 | C4546029 | C3164619 | C0271267 |

Model Information

Model Name: snomed_umls_mapping
Type: pipeline
Compatibility: Healthcare NLP 3.5.3+
License: Licensed
Edition: Official
Language: en
Size: 5.1 MB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • ChunkMapperModel