Pipeline to Mapping ICD10-CM Codes with Their Corresponding SNOMED Codes

Description

This pretrained pipeline is built on the top of icd10cm_snomed_mapper model.

Open in Colab Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline= PretrainedPipeline("icd10cm_snomed_mapping", "en", "clinical/models")

result= pipeline.fullAnnotate('R079 N4289 M62830')
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline= new PretrainedPipeline("icd10cm_snomed_mapping", "en", "clinical/models")

val result= pipeline.fullAnnotate("R079 N4289 M62830")
import nlu
nlu.load("en.map_entity.icd10cm_to_snomed.pipe").predict("""R079 N4289 M62830""")

Results

|    | icd10cm_code          | snomed_code                              |
|---:|:----------------------|:-----------------------------------------|
|  0 | R079 | N4289 | M62830 | 161972006 | 22035000 | 16410651000119105 |

Model Information

Model Name: icd10cm_snomed_mapping
Type: pipeline
Compatibility: Healthcare NLP 3.5.3+
License: Licensed
Edition: Official
Language: en
Size: 1.1 MB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • ChunkMapperModel