Pipeline to Mapping ICD10-CM Codes with Their Corresponding UMLS Codes

Description

This pretrained pipeline is built on the top of icd10cm_umls_mapper model.

Open in Colab Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")

result = pipeline.fullAnnotate(["M8950", "R822", "R0901"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")

val result = pipeline.fullAnnotate(Array("M8950", "R822", "R0901"))
import nlu
nlu.load("en.resolve.icd10cm.umls").predict("""Put your text here.""")

Results

|    | icd10cm_code   | umls_code   |
|---:|:---------------|:------------|
|  0 | M8950          | C4721411    |
|  1 | R822           | C0159076    |
|  2 | R0901          | C0004044    |

Model Information

Model Name: icd10cm_umls_mapping
Type: pipeline
Compatibility: Healthcare NLP 3.5.3+
License: Licensed
Edition: Official
Language: en
Size: 952.4 KB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • ChunkMapperModel