Description
This pretrained pipeline is built on the top of icd10cm_umls_mapper model.
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")
result = pipeline.fullAnnotate(["M8950", "R822", "R0901"])
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
val pipeline = new PretrainedPipeline("icd10cm_umls_mapping", "en", "clinical/models")
val result = pipeline.fullAnnotate(Array("M8950", "R822", "R0901"))
import nlu
nlu.load("en.resolve.icd10cm.umls").predict("""Put your text here.""")
Results
|    | icd10cm_code   | umls_code   |
|---:|:---------------|:------------|
|  0 | M8950          | C4721411    |
|  1 | R822           | C0159076    |
|  2 | R0901          | C0004044    |
Model Information
| Model Name: | icd10cm_umls_mapping | 
| Type: | pipeline | 
| Compatibility: | Healthcare NLP 3.5.3+ | 
| License: | Licensed | 
| Edition: | Official | 
| Language: | en | 
| Size: | 952.4 KB | 
Included Models
- DocumentAssembler
 - TokenizerModel
 - ChunkMapperModel