Pipeline to Mapping MESH Codes with Their Corresponding UMLS Codes

Description

This pretrained pipeline is built on the top of mesh_umls_mapper model.

Open in Colab Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline= PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")

result = pipeline.fullAnnotate("C028491 D019326 C579867")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline= new PretrainedPipeline("mesh_umls_mapping", "en", "clinical/models")

val result = pipeline.fullAnnotate("C028491 D019326 C579867")
import nlu
nlu.load("en.resolve.mesh.umls").predict("""C028491 D019326 C579867""")

Results

|    | mesh_code                   | umls_code                      |
|---:|:----------------------------|:-------------------------------|
|  0 | C028491 | D019326 | C579867 | C0043904 | C0045010 | C3696376 |

Model Information

Model Name: mesh_umls_mapping
Type: pipeline
Compatibility: Healthcare NLP 3.5.3+
License: Licensed
Edition: Official
Language: en
Size: 3.8 MB

Included Models

  • DocumentAssembler
  • TokenizerModel
  • ChunkMapperModel