Description
Extract living species from clinical texts in Portuguese which is critical to scientific disciplines like medicine, biology, ecology/biodiversity, nutrition and agriculture. This model is trained using roberta_embeddings_BR_BERTo
embeddings.
It is trained on the LivingNER corpus that is composed of clinical case reports extracted from miscellaneous medical specialties including COVID, oncology, infectious diseases, tropical medicine, urology, pediatrics, and others.
NOTE :
- The text files were translated from Spanish with a neural machine translation system.
- The annotations were translated with the same neural machine translation system.
- The translated annotations were transferred to the translated text files using an annotation transfer technology.
Predicted Entities
HUMAN
, SPECIES
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_BR_BERTo","pt")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
ner_model = MedicalNerModel.pretrained("ner_living_species_roberta", "pt", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter
])
data = spark.createDataFrame([["""Mulher de 23 anos, de Capinota, Cochabamba, Bolívia. Ela está no nosso país há quatro anos. Frequentou o departamento de emergência obstétrica onde foi encontrada grávida de 37 semanas, com um colo dilatado de 5 cm e membranas rompidas. O obstetra de emergência realizou um teste de estreptococos negativo e solicitou um hemograma, glucose, bioquímica básica, HBV, HCV e serologia da sífilis."""]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_BR_BERTo","pt")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val ner_model = MedicalNerModel.pretrained("ner_living_species_roberta", "pt", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(document_assembler,
sentence_detector,
tokenizer,
embeddings,
ner_model,
ner_converter))
val data = Seq("""Mulher de 23 anos, de Capinota, Cochabamba, Bolívia. Ela está no nosso país há quatro anos. Frequentou o departamento de emergência obstétrica onde foi encontrada grávida de 37 semanas, com um colo dilatado de 5 cm e membranas rompidas. O obstetra de emergência realizou um teste de estreptococos negativo e solicitou um hemograma, glucose, bioquímica básica, HBV, HCV e serologia da sífilis.""").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("pt.med_ner.living_species.roberta").predict("""Mulher de 23 anos, de Capinota, Cochabamba, Bolívia. Ela está no nosso país há quatro anos. Frequentou o departamento de emergência obstétrica onde foi encontrada grávida de 37 semanas, com um colo dilatado de 5 cm e membranas rompidas. O obstetra de emergência realizou um teste de estreptococos negativo e solicitou um hemograma, glucose, bioquímica básica, HBV, HCV e serologia da sífilis.""")
Results
+-------------+-------+
|ner_chunk |label |
+-------------+-------+
|Mulher |HUMAN |
|grávida |HUMAN |
|estreptococos|SPECIES|
|HBV |SPECIES|
|HCV |SPECIES|
|sífilis |SPECIES|
+-------------+-------+
Model Information
Model Name: | ner_living_species_roberta |
Compatibility: | Healthcare NLP 3.5.3+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | pt |
Size: | 16.4 MB |
References
https://temu.bsc.es/livingner/2022/05/03/multilingual-corpus/
Benchmarking
label precision recall f1-score support
B-HUMAN 0.86 0.91 0.88 2827
B-SPECIES 0.52 0.86 0.65 2796
I-HUMAN 0.79 0.43 0.55 180
I-SPECIES 0.62 0.81 0.70 1099
micro-avg 0.65 0.86 0.74 6902
macro-avg 0.69 0.75 0.70 6902
weighted-avg 0.68 0.86 0.75 6902