Pipeline components

 

PDF processing

Next section describes the transformers that deal with PDF files with the purpose of extracting text and image data from PDF files.

PdfToText

PDFToText extracts text from selectable PDF (with text layout).

Input Columns
Param name Type Default Column Data Description
inputCol string text binary representation of the PDF document
originCol string path path to the original file
Parameters
Param name Type Default Description
splitPage bool true Whether it needed to split document to pages
textStripper   TextStripperType.PDF_TEXT_STRIPPER Extract unstructured text
sort bool false Sort text during extraction with TextStripperType.PDF_LAYOUT_STRIPPER
partitionNum int 0 Force repartition dataframe if set to value more than 0.
onlyPageNum bool false Extract only page numbers.
extractCoordinates bool false Extract coordinates and store to the positions column
storeSplittedPdf bool false Store one page pdf’s for process it using PdfToImage.
Output Columns
Param name Type Default Column Data Description
outputCol string text extracted text
pageNumCol string pagenum page number or 0 when splitPage = false

NOTE: For setting parameters use setParamName method.

Example

from sparkocr.transformers import *

pdfPath = "path to pdf with text layout"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

transformer = PdfToText() \
  .setInputCol("content") \
  .setOutputCol("text") \
  .setPageNumCol("pagenum") \
  .setSplitPage(True)

data = transformer.transform(df)

data.select("pagenum", "text").show()
import com.johnsnowlabs.ocr.transformers.PdfToText

val pdfPath = "path to pdf with text layout"

// Read PDF file as binary file
val df = spark.read.format("binaryFile").load(pdfPath)

val transformer = new PdfToText()
  .setInputCol("content")
  .setOutputCol("text")
  .setPageNumCol("pagenum")
  .setSplitPage(true)

val data = transformer.transform(df)

data.select("pagenum", "text").show()

Output:

+-------+----------------------+
|pagenum|text                  |
+-------+----------------------+
|0      |This is a page.       |
|1      |This is another page. |
|2      |Yet another page.     |
+-------+----------------------+

PdfToImage

PdfToImage renders PDF to an image. To be used with scanned PDF documents. Output dataframe contains total_pages field with total number of pages. For process pdf with a big number of pages prefer to split pdf by setting splitNumBatch param. Number of partitions should be equal to number of cores/executors.

Input Columns
Param name Type Default Column Data Description
inputCol string content binary representation of the PDF document
originCol string path path to the original file
fallBackCol string text extracted text from previous method for detect if need to run transformer as fallBack
Parameters
Param name Type Default Description
splitPage bool true whether it needed to split document to pages
minSizeBeforeFallback int 10 minimal count of characters to extract to decide, that the document is the PDF with text layout
imageType ImageType ImageType.TYPE_BYTE_GRAY type of the image
resolution int 300 Output image resolution in dpi
keepInput boolean false Keep input column in dataframe. By default it is dropping.
partitionNum int 0 Number of Spark RDD partitions (0 value - without repartition)
binarization boolean false Enable/Disable binarization image after extract image.
binarizationParams Array[String] null Array of Binarization params in key=value format.
splitNumBatch int 0 Number of partitions or size of partitions, related to the splitting strategy.
partitionNumAfterSplit int 0 Number of Spark RDD partitions after splitting pdf document (0 value - without repartition).
splittingStategy SplittingStrategy SplittingStrategy.FIXED_SIZE_OF_PARTITION Controls how a single document is split into a number of partitions each containing a number of pages from the original document. This is useful to process documents with high page count. It can be one of {FIXED_SIZE_OF_PARTITION, FIXED_NUMBER_OF_PARTITIONS}, when FIXED_SIZE_OF_PARTITION is used, splitNumBatch represents the size of each partition, and when FIXED_NUMBER_OF_PARTITIONS is used, splitNumBatch represents the number of partitions.
Output Columns
Param name Type Default Column Data Description
outputCol string image extracted image struct (Image schema)
pageNumCol string pagenum page number or 0 when splitPage = false

Example:

from sparkocr.transformers import *

pdfPath = "path to pdf"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

pdfToImage = PdfToImage() \
 .setInputCol("content") \
 .setOutputCol("text") \
 .setPageNumCol("pagenum") \
 .setSplitPage(True)

data =  pdfToImage.transform(df)

data.select("pagenum", "text").show()
import com.johnsnowlabs.ocr.transformers.PdfToImage

val pdfPath = "path to pdf"

// Read PDF file as binary file
val df = spark.read.format("binaryFile").load(pdfPath)

val pdfToImage = new PdfToImage()
 .setInputCol("content")
 .setOutputCol("text")
 .setPageNumCol("pagenum")
 .setSplitPage(true)

val data =  pdfToImage.transform(df)

data.select("pagenum", "text").show()

ImageToPdf

ImageToPdf transform image to Pdf document. If dataframe contains few records for same origin path, it groups image by origin column and create multipage PDF document.

Input Columns
Param name Type Default Column Data Description
inputCol string image image struct (Image schema)
originCol string path path to the original file
Output Columns
Param name Type Default Column Data Description
outputCol string content binary representation of the PDF document

Example:

Read images and store them as single page PDF documents.

from sparkocr.transformers import *

pdfPath = "path to pdf"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

# Define transformer for convert to Image struct
binaryToImage = BinaryToImage() \
  .setInputCol("content") \
  .setOutputCol("image")

# Define transformer for store to PDF
imageToPdf = ImageToPdf() \
  .setInputCol("image") \
  .setOutputCol("content")

# Call transformers
image_df = binaryToImage.transform(df)
pdf_df =  pdfToImage.transform(image_df)

pdf_df.select("content").show()
import com.johnsnowlabs.ocr.transformers._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read.format("binaryFile").load(imagePath)

// Define transformer for convert to Image struct
val binaryToImage = new BinaryToImage()
  .setInputCol("content")
  .setOutputCol("image")

// Define transformer for store to PDF
val imageToPdf = new ImageToPdf()
  .setInputCol("image")
  .setOutputCol("content")

// Call transformers
val image_df = binaryToImage.transform(df)
val pdf_df =  pdfToImage.transform(image_df)

pdf_df.select("content").show()

TextToPdf

TextToPdf renders ocr results to PDF document as text layout. Each symbol will render to the same position with the same font size as in original image or PDF. If dataframe contains few records for same origin path, it groups image by origin column and create multipage PDF document.

Input Columns
Param name Type Default Column Data Description
inputCol string positions column with positions struct
inputImage string image image struct (Image schema)
inputText string text column name with recognized text
originCol string path path to the original file
inputContent string content column name with binary representation of original PDF file
Output Columns
Param name Type Default Column Data Description
outputCol string pdf binary representation of the PDF document

Example:

Read PDF document, run OCR and render results to PDF document.

from sparkocr.transformers import *

pdfPath = "path to pdf"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

pdf_to_image = PdfToImage() \
    .setInputCol("content") \
    .setOutputCol("image_raw")

binarizer = ImageBinarizer() \
    .setInputCol("image_raw") \
    .setOutputCol("image") \
    .setThreshold(130)

ocr = ImageToText() \
    .setInputCol("image") \
    .setOutputCol("text") \
    .setIgnoreResolution(False) \
    .setPageSegMode(PageSegmentationMode.SPARSE_TEXT) \
    .setConfidenceThreshold(60)

textToPdf = TextToPdf() \
    .setInputCol("positions") \
    .setInputImage("image") \
    .setOutputCol("pdf")

pipeline = PipelineModel(stages=[
    pdf_to_image,
    binarizer,
    ocr,
    textToPdf
])

result = pipeline.transform(df).collect()

# Store to file for debug
with open("test.pdf", "wb") as file:
    file.write(result[0].pdf)
import org.apache.spark.ml.Pipeline
import com.johnsnowlabs.ocr.transformers._

val pdfPath = "path to pdf"

// Read PDF file as binary file
val df = spark.read.format("binaryFile").load(pdfPath)

val pdfToImage = new PdfToImage()
  .setInputCol("content")
  .setOutputCol("image_raw")
  .setResolution(400)

val binarizer = new ImageBinarizer()
  .setInputCol("image_raw")
  .setOutputCol("image")
  .setThreshold(130)

val ocr = new ImageToText()
  .setInputCol("image")
  .setOutputCol("text")
  .setIgnoreResolution(false)
  .setPageSegMode(PageSegmentationMode.SPARSE_TEXT)
  .setConfidenceThreshold(60)

val textToPdf = new TextToPdf()
  .setInputCol("positions")
  .setInputImage("image")
  .setOutputCol("pdf")

val pipeline = new Pipeline()
pipeline.setStages(Array(
 pdfToImage,
 binarizer,
 ocr,
 textToPdf
))

val modelPipeline = pipeline.fit(df)

val pdf = modelPipeline.transform(df)

val pdfContent = pdf.select("pdf").collect().head.getAs[Array[Byte]](0)

// store to file
val tmpFile = Files.createTempFile(suffix=".pdf").toAbsolutePath.toString
val fos = new FileOutputStream(tmpFile)
fos.write(pdfContent)
fos.close()
println(tmpFile)

PdfAssembler

PdfAssembler group single page PDF documents by the filename and assemble muliplepage PDF document.

Input Columns
Param name Type Default Column Data Description
inputCol string page_pdf binary representation of the PDF document
originCol string path path to the original file
pageNumCol string pagenum for compatibility with another transformers
Output Columns
Param name Type Default Column Data Description
outputCol string pdf binary representation of the PDF document

Example:

from pyspark.ml import PipelineModel

from sparkocr.transformers import *

pdfPath = "path to pdf"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

pdf_to_image = PdfToImage() \
        .setInputCol("content") \
        .setOutputCol("image") \
        .setKeepInput(True)
    
# Run OCR and render results to PDF
ocr = ImageToTextPdf() \
    .setInputCol("image") \
    .setOutputCol("pdf_page")

# Assemble multipage PDF
pdf_assembler = PdfAssembler() \
    .setInputCol("pdf_page") \
    .setOutputCol("pdf")

pipeline = PipelineModel(stages=[
    pdf_to_image,
    ocr,
    pdf_assembler
])

pdf = pipeline.transform(df)

pdfContent = pdf.select("pdf").collect().head.getAs[Array[Byte]](0)

# store pdf to file
with open("test.pdf", "wb") as file:
    file.write(pdfContent[0].pdf) 
import java.io.FileOutputStream
import java.nio.file.Files

import com.johnsnowlabs.ocr.transformers._

val pdfPath = "path to pdf"

// Read PDF file as binary file
val df = spark.read.format("binaryFile").load(pdfPath)

val pdf_to_image = new PdfToImage()
  .setInputCol("content")
  .setOutputCol("image")
  .setKeepInput(True)
    
// Run OCR and render results to PDF
val ocr = new ImageToTextPdf()
  .setInputCol("image")
  .setOutputCol("pdf_page")

// Assemble multipage PDF
val pdf_assembler = new PdfAssembler()
  .setInputCol("pdf_page")
  .setOutputCol("pdf")

// Create pipeline
val pipeline = new Pipeline()
  .setStages(Array(
    pdf_to_image,
    ocr,
    pdf_assembler
))

val pdf = pipeline.fit(df).transform(df)

val pdfContent = pdf.select("pdf").collect().head.getAs[Array[Byte]](0)

// store to pdf file
val tmpFile = Files.createTempFile("with_regions_", s".pdf").toAbsolutePath.toString
val fos = new FileOutputStream(tmpFile)
fos.write(pdfContent)
fos.close()
println(tmpFile)

PdfDrawRegions

PdfDrawRegions transformer for drawing regions to Pdf document.

Input Columns
Param name Type Default Column Data Description
inputCol string content binary representation of the PDF document
originCol string path path to the original file
inputRegionsCol string region input column which contain regions
Parameters
Param name Type Default Description
lineWidth integer 1 line width for draw regions
Output Columns
Param name Type Default Column Data Description
outputCol string pdf_regions binary representation of the PDF document

Example:

from pyspark.ml import Pipeline

from sparkocr.transformers import *
from sparknlp.annotator import *
from sparknlp.base import *

pdfPath = "path to pdf"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

pdf_to_text = PdfToText() \
    .setInputCol("content") \
    .setOutputCol("text") \
    .setPageNumCol("page") \
    .setSplitPage(False)

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

sentence_detector = SentenceDetector() \
    .setInputCols(["document"]) \
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

entity_extractor = TextMatcher() \
    .setInputCols("sentence", "token") \
    .setEntities("./sparkocr/resources/test-chunks.txt", ReadAs.TEXT) \
    .setOutputCol("entity")

position_finder = PositionFinder() \
    .setInputCols("entity") \
    .setOutputCol("coordinates") \
    .setPageMatrixCol("positions") \
    .setMatchingWindow(10) \
    .setPadding(2)

draw = PdfDrawRegions() \
    .setInputRegionsCol("coordinates") \
    .setOutputCol("pdf_with_regions") \
    .setInputCol("content") \
    .setLineWidth(1)

pipeline = Pipeline(stages=[
    pdf_to_text,
    document_assembler,
    sentence_detector,
    tokenizer,
    entity_extractor,
    position_finder,
    draw
])

pdfWithRegions = pipeline.fit(df).transform(df)

pdfContent = pdfWithRegions.select("pdf_regions").collect().head.getAs[Array[Byte]](0)

# store to pdf to tmp file
with open("test.pdf", "wb") as file:
    file.write(pdfContent[0].pdf_regions) 
import java.io.FileOutputStream
import java.nio.file.Files

import com.johnsnowlabs.ocr.transformers._
import com.johnsnowlabs.nlp.{DocumentAssembler, SparkAccessor}
import com.johnsnowlabs.nlp.annotators._
import com.johnsnowlabs.nlp.util.io.ReadAs

val pdfPath = "path to pdf"

// Read PDF file as binary file
val df = spark.read.format("binaryFile").load(pdfPath)

val pdfToText = new PdfToText()
  .setInputCol("content")
  .setOutputCol("text")
  .setSplitPage(false)

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentenceDetector = new SentenceDetector()
  .setInputCols(Array("document"))
  .setOutputCol("sentence")

val tokenizer = new Tokenizer()
  .setInputCols(Array("sentence"))
  .setOutputCol("token")

val entityExtractor = new TextMatcher()
  .setInputCols("sentence", "token")
  .setEntities("test-chunks.txt", ReadAs.TEXT)
  .setOutputCol("entity")

val positionFinder = new PositionFinder()
  .setInputCols("entity")
  .setOutputCol("coordinates")
  .setPageMatrixCol("positions")
  .setMatchingWindow(10)
  .setPadding(2)

val pdfDrawRegions = new PdfDrawRegions()
  .setInputRegionsCol("coordinates")

// Create pipeline
val pipeline = new Pipeline()
  .setStages(Array(
    pdfToText,
    documentAssembler,
    sentenceDetector,
    tokenizer,
    entityExtractor,
    positionFinder,
    pdfDrawRegions
  ))

val pdfWithRegions = pipeline.fit(df).transform(df)

val pdfContent = pdfWithRegions.select("pdf_regions").collect().head.getAs[Array[Byte]](0)

// store to pdf to tmp file
val tmpFile = Files.createTempFile("with_regions_", s".pdf").toAbsolutePath.toString
val fos = new FileOutputStream(tmpFile)
fos.write(pdfContent)
fos.close()
println(tmpFile)

Results:

Result with regions

PdfToTextTable

Extract tables from Pdf document page. Input is a column with binary representation of PDF document. As output generate column with tables and tables text chunks coordinates (rows/cols).

Input Columns
Param name Type Default Column Data Description
inputCol string text binary representation of the PDF document
originCol string path path to the original file
Parameters
Param name Type Default Description
pageIndex integer -1 Page index to extract Tables.
guess bool false A logical indicating whether to guess the locations of tables on each page.
method string decide Identifying the prefered method of table extraction: basic, spreadsheet.
Output Columns
Param name Type Default Column Data Description
outputCol TableContainer tables Extracted tables

Example:

from pyspark.ml import Pipeline

from sparkocr.transformers import *
from sparknlp.annotator import *
from sparknlp.base import *

pdfPath = "path to pdf"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

pdf_to_text_table = PdfToTextTable()
pdf_to_text_table.setInputCol("content")
pdf_to_text_table.setOutputCol("table")
pdf_to_text_table.setPageIndex(1)
pdf_to_text_table.setMethod("basic")

table = pdf_to_text_table.transform(df)

# Show first row
table.select(table["table.chunks"].getItem(1)["chunkText"]).show(1, False)
import java.io.FileOutputStream
import java.nio.file.Files

import com.johnsnowlabs.ocr.transformers._
import com.johnsnowlabs.nlp.{DocumentAssembler, SparkAccessor}
import com.johnsnowlabs.nlp.annotators._
import com.johnsnowlabs.nlp.util.io.ReadAs

val pdfPath = "path to pdf"

// Read PDF file as binary file
val df = spark.read.format("binaryFile").load(pdfPath)

val pdfToTextTable = new PdfToTextTable()
  .setInputCol("content")
  .setOutputCol("table")
  .pdf_to_text_table.setPageIndex(1)
  .pdf_to_text_table.setMethod("basic")

table = pdfToTextTable.transform(df)

// Show first row
table.select(table["table.chunks"].getItem(1)["chunkText"]).show(1, False)

Output:

+------------------------------------------------------------------+
|table.chunks AS chunks#760[1].chunkText                           |
+------------------------------------------------------------------+
|[Mazda RX4, 21.0, 6, , 160.0, 110, 3.90, 2.620, 16.46, 0, 1, 4, 4]|
+------------------------------------------------------------------+

DOCX processing

Next section describes the transformers that deal with DOCX files with the purpose of extracting text and table data from it.

DocToText

DocToText extracts text from the DOCX document.

Input Columns
Param name Type Default Column Data Description
inputCol string text binary representation of the DOCX document
originCol string path path to the original file
Output Columns
Param name Type Default Column Data Description
outputCol string text extracted text
pageNumCol string pagenum for compatibility with another transformers

NOTE: For setting parameters use setParamName method.

Example

from sparkocr.transformers import *

docPath = "path to docx with text layout"

# Read DOCX file as binary file
df = spark.read.format("binaryFile").load(docPath)

transformer = DocToText() \
  .setInputCol("content") \
  .setOutputCol("text") 

data = transformer.transform(df)

data.select("pagenum", "text").show()
import com.johnsnowlabs.ocr.transformers.DocToText

val docPath = "path to docx with text layout"

// Read DOCX file as binary file
val df = spark.read.format("binaryFile").load(docPath)

val transformer = new DocToText()
  .setInputCol("content")
  .setOutputCol("text")

val data = transformer.transform(df)

data.select("pagenum", "text").show()

DocToTextTable

DocToTextTable extracts table data from the DOCX documents.

Input Columns
Param name Type Default Column Data Description
inputCol string text binary representation of the PDF document
originCol string path path to the original file
Output Columns
Param name Type Default Column Data Description
outputCol TableContainer tables Extracted tables

NOTE: For setting parameters use setParamName method.

Example

from sparkocr.transformers import *

docPath = "path to docx with text layout"

# Read DOCX file as binary file
df = spark.read.format("binaryFile").load(docPath)

transformer = DocToTextTable() \
  .setInputCol("content") \
  .setOutputCol("tables") 

data = transformer.transform(df)

data.select("tables").show()
import com.johnsnowlabs.ocr.transformers.DocToTextTable

val docPath = "path to docx with text layout"

// Read DOCX file as binary file
val df = spark.read.format("binaryFile").load(docPath)

val transformer = new DocToTextTable()
  .setInputCol("content")
  .setOutputCol("tables")

val data = transformer.transform(df)

data.select("tables").show()

DocToPdf

DocToPdf convert DOCX document to PDF document.

Input Columns
Param name Type Default Column Data Description
inputCol string text binary representation of the DOCX document
originCol string path path to the original file
Output Columns
Param name Type Default Column Data Description
outputCol string text binary representation of the PDF document

NOTE: For setting parameters use setParamName method.

Example

from sparkocr.transformers import *

docPath = "path to docx with text layout"

# Read DOCX file as binary file
df = spark.read.format("binaryFile").load(docPath)

transformer = DocToPdf() \
  .setInputCol("content") \
  .setOutputCol("pdf") 

data = transformer.transform(df)

data.select("pdf").show()
import com.johnsnowlabs.ocr.transformers.DocToPdf

val docPath = "path to docx with text layout"

// Read DOCX file as binary file
val df = spark.read.format("binaryFile").load(docPath)

val transformer = new DocToPdf()
  .setInputCol("content")
  .setOutputCol("pdf")

val data = transformer.transform(df)

data.select("pdf").show()

PptToTextTable

PptToTextTable extracts table data from the PPT and PPTX documents.

Input Columns
Param name Type Default Column Data Description
inputCol string text binary representation of the PPT document
originCol string path path to the original file
Output Columns
Param name Type Default Column Data Description
outputCol TableContainer tables Extracted tables

NOTE: For setting parameters use setParamName method.

Example

from sparkocr.transformers import *

docPath = "path to docx with text layout"

# Read PPT file as binary file
df = spark.read.format("binaryFile").load(docPath)

transformer = PptToTextTable() \
  .setInputCol("content") \
  .setOutputCol("tables") 

data = transformer.transform(df)

data.select("tables").show()
import com.johnsnowlabs.ocr.transformers.PptToTextTable

val docPath = "path to docx with text layout"

// Read PPT file as binary file
val df = spark.read.format("binaryFile").load(docPath)

val transformer = new PptToTextTable()
  .setInputCol("content")
  .setOutputCol("tables")

val data = transformer.transform(df)

data.select("tables").show()

PptToPdf

PptToPdf convert PPT and PPTX documents to PDF document.

Input Columns
Param name Type Default Column Data Description
inputCol string text binary representation of the PPT document
originCol string path path to the original file
Output Columns
Param name Type Default Column Data Description
outputCol string text binary representation of the PDF document

NOTE: For setting parameters use setParamName method.

Example

from sparkocr.transformers import *

docPath = "path to PPT with text layout"

# Read DOCX file as binary file
df = spark.read.format("binaryFile").load(docPath)

transformer = PptToPdf() \
  .setInputCol("content") \
  .setOutputCol("pdf") 

data = transformer.transform(df)

data.select("pdf").show()
import com.johnsnowlabs.ocr.transformers.PptToPdf

val docPath = "path to docx with text layout"

// Read PPT file as binary file
val df = spark.read.format("binaryFile").load(docPath)

val transformer = new PptToPdf()
  .setInputCol("content")
  .setOutputCol("pdf")

val data = transformer.transform(df)

data.select("pdf").show()

Dicom processing

DicomToImage

DicomToImage transforms dicom object (loaded as binary file) to image struct.

Input Columns
Param name Type Default Column Data Description
inputCol string content binary dicom object
originCol string path path to the original file
Output Columns
Param name Type Default Column Data Description
outputCol string image extracted image struct (Image schema)
pageNumCol integer pagenum page (image) number begin from 0
metadataCol string metadata Output column name for dicom metatdata ( json formatted )

Scala example:

from sparkocr.transformers import *

dicomPath = "path to dicom files"

# Read dicom file as binary file
df = spark.read.format("binaryFile").load(dicomPath)

dicomToImage = DicomToImage() \
  .setInputCol("content") \
  .setOutputCol("image") \
  .setMetadataCol("meta")

data = dicomToImage.transform(df)

data.select("image", "pagenum", "meta").show()
import com.johnsnowlabs.ocr.transformers.DicomToImage

val dicomPath = "path to dicom files"

// Read dicom file as binary file
val df = spark.read.format("binaryFile").load(dicomPath)

val dicomToImage = new DicomToImage()
  .setInputCol("content")
  .setOutputCol("image")
  .setMetadataCol("meta")

val data = dicomToImage.transform(df)

data.select("image", "pagenum", "meta").show()

ImageToDicom

ImageToDicom transforms image to Dicom document.

Input Columns
Param name Type Default Column Data Description
inputCol string image image struct (Image schema)
originCol string path path to the original file
metadataCol string metadata dicom metatdata ( json formatted )
Output Columns
Param name Type Default Column Data Description
outputCol string dicom binary dicom object

Scala example:

from sparkocr.transformers import *

imagePath = "path to image file"

# Read image file as binary file
df = spark.read.format("binaryFile").load(imagePath)

binaryToImage = BinaryToImage() \
  .setInputCol("content") \
  .setOutputCol("image")

image_df = binaryToImage.transform(df)

imageToDicom = ImageToDicom() \
  .setInputCol("image") \
  .setOutputCol("dicom")

data = imageToDicom.transform(image_df)

data.select("dicom").show()
import com.johnsnowlabs.ocr.transformers.ImageToDicom

val imagePath = "path to image file"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val imageToDicom = new ImageToDicom()
  .setInputCol("image")
  .setOutputCol("dicom")

val data = imageToDicom.transform(df)

data.select("dicom").show()

DicomToImageV2

Used to convert the dicom frames into images.

Input Columns
Param name Type Default Column Data Description
inputCol string content Specifies the column containing the DICOM file path or buffer input

Parameters

Param name Type Default Description
KeepInput boolean False Indicates whether input columns should be retained in the resulting DataFrame
PageNumCol string - Specifies the column containing the page number in the resulting DataFrame
Output Columns
Param name Type Default Column Data Description
outputCol string image Specifies the column containing the images in the resulting DataFrame

Example:

from sparkocr.transformers import DicomToImageV2
from sparkocr.utils import display_images

df = spark.read.format("binaryFile").load(path_to_dicom_file)

dicom_to_image_v2 = DicomToImageV2() \
    .setInputCols(["path"]) \
    .setKeepInput(True) \
    .setOutputCol("image_raw") \
    .setPageNumCol("pagenum")

result = dicom_to_image_v2.transform(df).cache()

display_images(result, "image_raw")
import com.johnsnowlabs.ocr.transformers.DicomToImageV2
import com.johnsnowlabs.ocr.utils.display_images

val df = spark.read.format("binaryFile").load(path_to_dicom_file)

val dicom_to_image_v2 = DicomToImageV2()
    .setInputCols(["path"])
    .setKeepInput(True)
    .setOutputCol("image_raw")
    .setPageNumCol("pagenum")

val result = dicom_to_image_v2.transform(df).cache()
val display_images(result, "image_raw")

DicomToImageV3

Used to convert the dicom frames into images. Faster than DicomToImageV2.

Input Columns
Param name Type Default Column Data Description
inputCols list[string] list[content] Specifies the input columns. If the DICOM splitter is used upstream, provide both the DICOM path and frames; otherwise, provide either the file path or binary content.
originCol string - Specifies the column containing the path of the original DICOM file.

Parameters

Param name Type Default Description
KeepInput boolean False Indicates whether input columns should be retained in the resulting DataFrame
PageNumCol string - Specifies the column containing the page number in the resulting DataFrame
Scale boolean 0 The desired width of the input image, to which the image will be resized
FrameLimit int 0 Limits the number of frames extracted; set to 0 to extract all frames.
Output Columns
Param name Type Default Column Data Description
outputCol string - Specifies the column in the output DataFrame that contains the raw images

Example:

from sparkocr.transformers import DicomSplitter, DicomToImageV3
from sparkocr.enums import SplittingStrategy
from pyspark.ml import PipelineModel

df = spark.read.format("binaryFile").load(dicom_file_path).drop("content")

dicom_splitter = DicomSplitter() \
    .setInputCol("path") \
    .setOutputCol("frames") \
    .setKeepInput(True) \
    .setSplitNumBatch(2) \
    .setPartitionNum(10) \
    .setSplittingStategy(SplittingStrategy.FIXED_SIZE_OF_PARTITION)

dicom_to_image = DicomToImageV3() \
    .setInputCols(["path", "frames"]) \
    .setOutputCol("image_raw") \
    .setKeepInput(False) \
    .setPageNumCol("page_number") \
    .setScale(1) \
    .setFrameLimit(0)

pipeline = PipelineModel(stages=[
  dicom_splitter,
  dicom_to_image
])

result = pipeline.transform(df).cache()
import com.johnsnowlabs.ocr.transformers.DicomSplitter
import com.johnsnowlabs.ocr.transformers.DicomToImageV3
import com.johnsnowlabs.ocr.enums.SplittingStrategy
import com.pyspark.ml.PipelineModel

val df = spark.read.format("binaryFile").load(dicom_file_path).drop("content")

val dicom_splitter = DicomSplitter()
    .setInputCol("path")
    .setOutputCol("frames")
    .setKeepInput(True)
    .setSplitNumBatch(2)
    .setPartitionNum(10)
    .setSplittingStategy(SplittingStrategy.FIXED_SIZE_OF_PARTITION)

val dicom_to_image = DicomToImageV3()
    .setInputCols(Array("path", "frames"))
    .setOutputCol("image_raw")
    .setKeepInput(False)
    .setPageNumCol("page_number")
    .setScale(1)
    .setFrameLimit(0)

val pipeline = new PipelineModel().setStages(Array(
  dicom_splitter,
  dicom_to_image
))

val result = pipeline.transform(df).cache()

DicomDrawRegions

DicomDrawRegions draw regions to Dicom Image.

Input Columns
Param name Type Default Column Data Description
inputCol string content Binary dicom object
inputRegionsCol string regions Detected Array[Coordinates] from PositionFinder

Parameters

Param name Type Default Description
scaleFactor float 1.0 Scaling factor for regions.
rotated boolean False Enable/Disable support for rotated rectangles
keepInput boolean False Keep the original input column
compression string RLELossless Compression type
forceCompress boolean False True - Force compress image. False - compress only if original image was compressed
aggCols Array[string] [‘path’] Sets the columns to be included in aggregation. These columns are preserved in the output DataFrame after transformations
forceOutput boolean False Enables decompressed output for DICOM files when compression is unsupported or format constraints prevent re-compression
Output Columns
Param name Type Default Column Data Description
outputCol string image Modified Dicom file data

Example:

from sparkocr.transformers import *

dicomPath = "path to dicom files"

# Read dicom file as binary file
df = spark.read.format("binaryFile").load(dicomPath)

dicomToImage = DicomToImage() \
  .setInputCol("content") \
  .setOutputCol("image") \
  .setMetadataCol("meta")

position_finder = PositionFinder() \
  # Usually chunks are created using the deidentification_nlp_pipeline
  .setInputCols("ner_chunk") \
  .setOutputCol("coordinates") \
  .setPageMatrixCol("positions") \
  .setPadding(0)

draw_regions = DicomDrawRegions() \
  .setInputCol("content") \
  .setInputRegionsCol("coordinates") \
  .setOutputCol("dicom") \
  .setKeepInput(True) \
  .setScaleFactor(1/3.0) \
  .setAggCols(["path", "content"])

data = dicomToImage.transform(df)

data.select("content", "dicom").show()
// Note: DicomDrawRegions class is not available in the Scala API
// This class is used in the Python API for DICOM image manipulation and transformation.

DicomSplitter

DicomSplitter splits the dicom file into several frames.

Input Columns
Param name Type Default Column Data Description
inputCol string content Binary dicom object

Parameters

Param name Type Default Description
PartitionNum Int 5 The number of partitions in the output DataFrame
SplitNumBatch Int 2 The number of frames per row for the input DICOM file
KeepInput boolean False Indicates whether the input columns should be included in the result DataFrame
SplittingStrategy enum FixedSizePartition Defines the partitioning strategy, either a fixed number of partitions (evenly dividing data across a set number of partitions) or a fixed size of partitions (each partition containing a specified number of elements)
Output Columns
Param name Type Default Column Data Description
outputCol string image The output column name containing the DICOM file’s image frames

Example:

from sparkocr.transformers import DicomSplitter
from sparkocr.enums import SplittingStrategy

df = spark.read.format("binaryFile").load(dicom_file_path).drop("content")

dicom_splitter = DicomSplitter() \
    .setInputCol("path") \
    .setOutputCol("frames") \
    .setKeepInput(True) \
    .setSplitNumBatch(2) \
    .setPartitionNum(10) \
    .setSplittingStategy(SplittingStrategy.FIXED_SIZE_OF_PARTITION)

result = dicom_splitter.transform(df).cache()
import com.johnsnowlabs.ocr.transformers.DicomSplitter
import com.johnsnowlabs.ocr.enums.SplittingStrategy

val df = spark.read.format("binaryFile").load(dicom_file_path).drop("content")

val dicom_splitter = DicomSplitter()
    .setInputCol("path")
    .setOutputCol("frames")
    .setKeepInput(True)
    .setSplitNumBatch(2)
    .setPartitionNum(10)
    .setSplittingStategy(SplittingStrategy.FIXED_SIZE_OF_PARTITION)

val result = dicom_splitter.transform(df).cache()

DicomMetadataDeidentifier

Remove Protected Health Information from dicom tags.

Input Columns
Param name Type Default Column Data Description
inputCols array[string] array[content] Expects the path or buffer for the DICOM file, along with optional metadata.

Parameters

Param name Type Default Description
KeepInput boolean False Indicates whether the input columns should be included in the result DataFrame
PlaceHolderText string anonymous Specifies the placeholder text used to deidentify sensitive PHI (Protected Health Information) in DICOM tags
RemovePrivateTags boolean False Indicates whether private tags should be removed from the DICOM file
BlackList array[string] - Contains a list of specific DICOM tags to be deidentified; only tags in this list will be processed for deidentification if provided
Output Columns
Param name Type Default Column Data Description
outputCol string - Column that stores the final DICOM file after de-identifying DICOM tags

Example:

from sparkocr.transformers import DicomMetadataDeidentifier

df = spark.read.format("binaryFile").load(dicom_file_path)

dicom_deidentifier = DicomMetadataDeidentifier() \
    .setInputCols(["path"]) \
    .setOutputCol("dicom_deidentified") \
    .setKeepInput(True) \
    .setPlaceholderText("***") \
    .setRemovePrivateTags(True)

result = dicom_deidentifier.transform(df).cache()
result.write.format("binaryFormat") \
    .option("type", "dicom") \
    .option("field", "dicom_deidentified") \
    .option("extension", "dcm") \
    .option("prefix", "de-id-ybr") \
    .mode("overwrite") \
    .save("/content/dicom")
import com.johnsnowlabs.ocr.transformers.DicomMetadataDeidentifier

val df = spark.read.format("binaryFile").load(dicom_file_path)

val dicom_deidentifier = DicomMetadataDeidentifier()
    .setInputCols(Array("path"))
    .setOutputCol("dicom_deidentified")
    .setKeepInput(True)
    .setPlaceholderText("***")
    .setRemovePrivateTags(True)

val result = dicom_deidentifier.transform(df).cache()
val result.write.format("binaryFormat")
    .option("type", "dicom")
    .option("field", "dicom_deidentified")
    .option("extension", "dcm")
    .option("prefix", "de-id-ybr")
    .mode("overwrite")
    .save("/content/dicom")

DicomDeidentifier

Uses metadata and detected text positions to locate and de-identify sensitive information in both pixel data and metadata.

Input Columns
Param name Type Default Column Data Description
inputCols array[string] array[content] Accepts the positions and dicom metadata as input.
       

Parameters

Param name Type Default Description
KeepInput boolean False Indicates whether the input columns should be included in the result DataFrame
BlackList array[string] anonymous Specifies a list of words to be removed from pixels.
BlackListFile string False Path to CSV file containing a list of words to be removed from pixels.
Output Columns
Param name Type Default Column Data Description
outputCol string - Specifies the column containing the dicom in the resulting DataFrame.

Example:

from sparkocr.transformers import DicomToMetadata, DicomSplitter, DicomToImageV3, ImageTextDetector, ImageToTextV3, DicomDeidentifier
from sparkocr.enums import OcrOutputFormat, SplittingStrategy
from pyspark.ml import PipelineModel

df = spark.read.format("binaryFile").load(path_to_dicom_file).drop("content")

dicom_to_meta = DicomToMetadata() \
    .setInputCol("path") \
    .setOutputCol("metadata") \
    .setKeepInput(True) 

dicom_splitter = DicomSplitter() \
    .setInputCol("path") \
    .setOutputCol("frames") \
    .setKeepInput(True) \
    .setSplitNumBatch(2) \
    .setPartitionNum(10) \
    .setSplittingStategy(SplittingStrategy.FIXED_SIZE_OF_PARTITION)

dicom_to_image = DicomToImageV3() \
    .setInputCols(["path", "frames"]) \
    .setOutputCol("image_raw") \
    .setKeepInput(True)

text_detector = ImageTextDetector.pretrained("image_text_detector_opt", "en", "clinical/ocr") \
    .setInputCol("image_raw") \
    .setOutputCol("text_regions") \
    .setSizeThreshold(10) \
    .setScoreThreshold(0.9) \
    .setLinkThreshold(0.4) \
    .setTextThreshold(0.2)

ocr = ImageToTextV3() \
    .setInputCols(["image_raw", "text_regions"]) \
    .setOutputCol("text")

dicom_deidentifier = DicomDeidentifier() \
    .setInputCols(["positions","metadata"]) \
    .setKeepInput(True) \
    .setOutputCol("entity") \
    .setBlackList(["acc"])

pipeline = PipelineModel(stages=[
  dicom_to_meta,
  dicom_splitter,
  dicom_to_image,
  text_detector,
  ocr,
  dicom_deidentifier
])

result = pipeline.transform(df).cache()
import org.apache.spark.ml.Pipeline
import com.johnsnowlabs.ocr.transformers.DicomToMetadata
import com.johnsnowlabs.ocr.transformers.DicomSplitter
import com.johnsnowlabs.ocr.transformers.DicomToImageV3
import com.johnsnowlabs.ocr.transformers.ImageTextDetector
import com.johnsnowlabs.ocr.transformers.ImageToTextV3
import com.johnsnowlabs.ocr.transformers.DicomDeidentifier
import com.johnsnowlabs.ocr.enums.OcrOutputFormat
import com.johnsnowlabs.ocr.enums.SplittingStrategy

val df = spark.read.format("binaryFile").load(path_to_dicom_file).drop("content")

val dicom_to_meta = DicomToMetadata() 
    .setInputCol("path") 
    .setOutputCol("metadata") 
    .setKeepInput(True) 

val dicom_splitter = DicomSplitter() 
    .setInputCol("path") 
    .setOutputCol("frames") 
    .setKeepInput(True) 
    .setSplitNumBatch(2) 
    .setPartitionNum(10) 
    .setSplittingStategy(SplittingStrategy.FIXED_SIZE_OF_PARTITION)

val dicom_to_image = DicomToImageV3() 
    .setInputCols(Array("path", "frames")) 
    .setOutputCol("image_raw") 
    .setKeepInput(True)

val text_detector = ImageTextDetector.pretrained("image_text_detector_opt", "en", "clinical/ocr") 
    .setInputCol(Array("image_raw"))
    .setOutputCol("text_regions") 
    .setSizeThreshold(10) 
    .setScoreThreshold(0.9) 
    .setLinkThreshold(0.4) 
    .setTextThreshold(0.2)

val ocr = ImageToTextV3() 
    .setInputCols(Array("image_raw", "text_regions")) 
    .setOutputCol("text")

val dicom_deidentifier = DicomDeidentifier() 
    .setInputCols(Array("positions","metadata")) 
    .setKeepInput(True) 
    .setOutputCol("entity") 
    .setBlackList(Array("acc"))

pipeline = new PipelineModel().setStages(Array(
  dicom_to_meta,
  dicom_splitter,
  dicom_to_image,
  text_detector,
  ocr,
  dicom_deidentifier
))

val result = pipeline.transform(df).cache()

DicomToMetadata

Extract metadata from Dicom files.

Input Columns
Param name Type Default Column Data Description
inputCol string content Specifies the path or buffer for the DICOM file.

Parameters

Param name Type Default Description
KeepInput boolean False Indicates if the DICOM input columns should remain in the final result DataFrame.
Output Columns
Param name Type Default Column Data Description
outputCol string - Specify the column name to contain the dicom metadata as output

Example:

from sparkocr.transformers import DicomToMetadata

dicom_to_meta = DicomToMetadata() \
    .setInputCol("path") \
    .setOutputCol("metadata") \
    .setKeepInput(True)

df_dicom = spark.read.format("binaryFile").load(dicom_file_path)

result = dicom_to_meta.transform(df_dicom).cache()
dicom_metadata = result.select("metadata").collect()[0].asDict()["metadata"]
import com.johnsnowlabs.ocr.transformers.DicomToMetadata

val dicom_to_meta = DicomToMetadata()
    .setInputCol("path")
    .setOutputCol("metadata")
    .setKeepInput(True)

val df_dicom = spark.read.format("binaryFile").load(dicom_file_path)

val result = dicom_to_meta.transform(df_dicom).cache()
val dicom_metadata = result.select("metadata").collect()[0].asDict()Array("metadata")

DicomToPDF

Convert Dicom Files to PDF files.

Input Columns
Param name Type Default Column Data Description
inputCols array[string] - Specifies the input path or buffer for the DICOM file.

Parameters

Param name Type Default Description
KeepInput boolean False Determines if the original input should be retained in the resulting DataFrame.
Output Columns
Param name Type Default Column Data Description
outputCol string - Specifies the column name containing the final PDF file resulting from the conversion.

Example:

from sparkocr.transformers import DicomToPdf, PdfToImage
from pyspark.ml import PipelineModel

df_dicom = spark.read.format("binaryFile").load(dicom_file_path)

dicom_to_pdf = DicomToPdf() \
    .setInputCols(["path"]) \
    .setOutputCol("dicom_pdf") \
    .setKeepInput(True)

pdf_to_image = PdfToImage() \
    .setInputCol("dicom_pdf") \
    .setOutputCol("image")

pipeline = PipelineModel(stages=[
   dicom_to_pdf,
   pdf_to_image
])

result = pipeline.transform(df_dicom).cache()
import com.johnsnowlabs.ocr.transformers.DicomToPdf
import com.johnsnowlabs.ocr.transformers.PdfToImage
import com.pyspark.ml.PipelineModel

df_dicom = spark.read.format("binaryFile").load(dicom_file_path)

val dicom_to_pdf = DicomToPdf()
    .setInputCols(Array("path"))
    .setOutputCol("dicom_pdf")
    .setKeepInput(True)

val pdf_to_image = PdfToImage()
    .setInputCol("dicom_pdf")
    .setOutputCol("image")

val pipeline = new PipelineModel().setStages(Array(
   dicom_to_pdf,
   pdf_to_image
))

val result = pipeline.transform(df_dicom).cache()

DicomUpdatePDF

Converts pdf file into dicom as a last step for de-identification process.

Input Columns
Param name Type Default Column Data Description
inputCol string content Specifies the column containing the DICOM file path or buffer input

Parameters

Param name Type Default Description
KeepInput boolean False Indicates whether input columns should be retained in the resulting DataFrame
InputPdfCol string - Specifies the column containing the pdf object in the resulting DataFrame.
Output Columns
Param name Type Default Column Data Description
outputCol string - Specifies the column containing the dicom in the resulting DataFrame.

Example:

from sparkocr.transformers import DicomUpdatePdf

dciom_update_pdf = DicomUpdatePdf() \
    .setInputCol("path") \
    .setInputPdfCol("pdf") \
    .setOutputCol("dicom") \
    .setKeepInput(True)

result = dciom_update_pdf.transform(df).cache()
result.write.format("binaryFormat") \
     .option("type", "dicom") \
     .option("field", "dicom") \
     .option("extension", "dcm") \
     .option("prefix", "de-id-ybr") \
     .mode("overwrite") \
     .save("/content/dicom")
import com.johnsnowlabs.ocr.transformers.DicomUpdatePdf

val dciom_update_pdf = DicomUpdatePdf()
    .setInputCol("path")
    .setInputPdfCol("pdf")
    .setOutputCol("dicom")
    .setKeepInput(True)

val result = dciom_update_pdf.transform(df).cache()
val result.write.format("binaryFormat")
     .option("type", "dicom")
     .option("field", "dicom")
     .option("extension", "dcm")
     .option("prefix", "de-id-ybr")
     .mode("overwrite")
     .save("/content/dicom")

DicomUpdatePDF

Converts pdf file into dicom as a last step for de-identification process.

Input Columns
Param name Type Default Column Data Description
inputCol string content Specifies the column containing the DICOM file path or buffer input

Parameters

Param name Type Default Description
KeepInput boolean False Indicates whether input columns should be retained in the resulting DataFrame
InputPdfCol string - Specifies the column containing the pdf object in the resulting DataFrame.
Output Columns
Param name Type Default Column Data Description
outputCol string - Specifies the column containing the dicom in the resulting DataFrame.

Example:

from sparkocr.transformers import DicomUpdatePdf

dciom_update_pdf = DicomUpdatePdf() \
    .setInputCol("path") \
    .setInputPdfCol("pdf") \
    .setOutputCol("dicom") \
    .setKeepInput(True)

result = dciom_update_pdf.transform(df).cache()
result.write.format("binaryFormat") \
     .option("type", "dicom") \
     .option("field", "dicom") \
     .option("extension", "dcm") \
     .option("prefix", "de-id-ybr") \
     .mode("overwrite") \
     .save("/content/dicom")
import com.johnsnowlabs.ocr.transformers.DicomUpdatePdf

val dciom_update_pdf = DicomUpdatePdf()
    .setInputCol("path")
    .setInputPdfCol("pdf")
    .setOutputCol("dicom")
    .setKeepInput(True)

val result = dciom_update_pdf.transform(df).cache()
val result.write.format("binaryFormat")
     .option("type", "dicom")
     .option("field", "dicom")
     .option("extension", "dcm")
     .option("prefix", "de-id-ybr")
     .mode("overwrite")
     .save("/content/dicom")

Image pre-processing

Next section describes the transformers for image pre-processing: scaling, binarization, skew correction, etc.

BinaryToImage

BinaryToImage transforms image (loaded as binary file) to image struct.

Input Columns
Param name Type Default Column Data Description
inputCol string content binary representation of the image
originCol string path path to the original file
Output Columns
Param name Type Default Column Data Description
outputCol string image extracted image struct (Image schema)

Scala example:

from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read.format("binaryFile").load(imagePath)

binaryToImage = BinaryToImage() \
  .setInputCol("content") \
  .setOutputCol("image")

data = binaryToImage.transform(df)

data.select("image").show()
import com.johnsnowlabs.ocr.transformers.BinaryToImage

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read.format("binaryFile").load(imagePath)

val binaryToImage = new BinaryToImage()
  .setInputCol("content")
  .setOutputCol("image")

val data = binaryToImage.transform(df)

data.select("image").show()

GPUImageTransformer

GPUImageTransformer allows to run image pre-processing operations on GPU.

It supports the following operations:

  • Scaling
  • Otsu thresholding
  • Huang thresholding
  • Erosion
  • Dilation

GPUImageTransformer allows to add few operations. To add operations you need to call one of the methods with params:

Method name Params Description
addScalingTransform factor Scale image by scaling factor.
addOtsuTransform   The automatic thresholder utilizes the Otsu threshold method.
addHuangTransform   The automatic thresholder utilizes the Huang threshold method.
addDilateTransform width, height Computes the local maximum of a pixels rectangular neighborhood. The rectangles size is specified by its half-width and half-height.
addErodeTransform width, height Computes the local minimum of a pixels rectangular neighborhood. The rectangles size is specified by its half-width and half-height
Input Columns
Param name Type Default Column Data Description
inputCol string image image struct (Image schema)
Parameters
Param name Type Default Description
imageType ImageType ImageType.TYPE_BYTE_BINARY Type of the output image
gpuName string ”” GPU device name.
Output Columns
Param name Type Default Column Data Description
outputCol string transformed_image image struct (Image schema)

Example:

from sparkocr.transformers import *
from sparkocr.enums import ImageType
from sparkocr.utils import display_images

imagePath = "path to image"

# Read image file as binary file
df = spark.read \
  .format("binaryFile") \
  .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

transformer = GPUImageTransformer() \
  .setInputCol("image") \
  .setOutputCol("transformed_image") \
  .addHuangTransform() \
  .addScalingTransform(3) \
  .addDilateTransform(2, 2) \
  .setImageType(ImageType.TYPE_BYTE_BINARY)

pipeline = PipelineModel(stages=[
            binary_to_image,
            transformer
        ])

result = pipeline.transform(df)

display_images(result, "transformed_image")
import com.johnsnowlabs.ocr.transformers.GPUImageTransformer
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val transformer = new GPUImageTransformer()
  .setInputCol("image")
  .setOutputCol("transformed_image")
  .addHuangTransform()
  .addScalingTransform(3)
  .addDilateTransform(2, 2)
  .setImageType(ImageType.TYPE_BYTE_BINARY)

val data = transformer.transform(df)

data.storeImage("transformed_image")

ImageBinarizer

ImageBinarizer transforms image to binary color schema, based on threshold.

Input Columns
Param name Type Default Column Data Description
inputCol string image image struct (Image schema)
Parameters
Param name Type Default Description
threshold int 170  
Output Columns
Param name Type Default Column Data Description
outputCol string binarized_image image struct (Image schema)

Example:

from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read \
  .format("binaryFile") \
  .load(imagePath) \
  .asImage("image")

binirizer = ImageBinarizer() \
  .setInputCol("image") \
  .setOutputCol("binary_image") \
  .setThreshold(100)

data = binirizer.transform(df)

data.show()
import com.johnsnowlabs.ocr.transformers.ImageBinarizer
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val binirizer = new ImageBinarizer()
  .setInputCol("image")
  .setOutputCol("binary_image")
  .setThreshold(100)

val data = binirizer.transform(df)

data.storeImage("binary_image")

Original image:

original

Binarized image with 100 threshold:

binarized

ImageAdaptiveBinarizer

Supported Methods:

  • OTSU. Returns a single intensity threshold that separate pixels into two classes, foreground and background.
  • Gaussian local thresholding. Thresholds the image using a locally adaptive threshold that is computed using a local square region centered on each pixel. The threshold is equal to the gaussian weighted sum of the surrounding pixels times the scale.
  • Sauvola. Is a Local thresholding technique that are useful for images where the background is not uniform.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
width float 90 Width of square region.
method TresholdingMethod TresholdingMethod.GAUSSIAN Method used to determine adaptive threshold.
scale float 1.1f Scale factor used to adjust threshold.
imageType ImageType ImageType.TYPE_BYTE_BINARY Type of the output image

Output Columns

Param name Type Default Column Data Description
outputCol string binarized_image image struct (Image schema)

Example:

from pyspark.ml import PipelineModel

from sparkocr.transformers import *
from sparkocr.utils import display_image

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

adaptive_thresholding = ImageAdaptiveBinarizer() \
    .setInputCol("image") \
    .setOutputCol("binarized_image") \
    .setWidth(100) \
    .setScale(1.1)

pipeline = PipelineModel(stages=[
            binary_to_image,
            adaptive_thresholding
        ])

result = pipeline.transform(df)

for r in result.select("image", "corrected_image").collect():
    display_image(r.image)
    display_image(r.corrected_image)
import com.johnsnowlabs.ocr.transformers.*
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val binirizer = new ImageAdaptiveBinarizer()
  .setInputCol("image")
  .setOutputCol("binary_image")
  .setWidth(100)
  .setScale(1.1)

val data = binirizer.transform(df)

data.storeImage("binary_image")

ImageAdaptiveThresholding

Compute a threshold mask image based on local pixel neighborhood and apply it to image.

Also known as adaptive or dynamic thresholding. The threshold value is the weighted mean for the local neighborhood of a pixel subtracted by a constant.

Supported methods:

  • GAUSSIAN
  • MEAN
  • MEDIAN
  • WOLF
  • SINGH

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
blockSize int 170 Odd size of pixel neighborhood which is used to calculate the threshold value (e.g. 3, 5, 7, …, 21, …).
method AdaptiveThresholdingMethod AdaptiveThresholdingMethod.GAUSSIAN Method used to determine adaptive threshold for local neighbourhood in weighted mean image.
offset int   Constant subtracted from weighted mean of neighborhood to calculate the local threshold value. Default offset is 0.
mode string   The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’
cval int   Value to fill past edges of input if mode is ‘constant’.

Output Columns

Param name Type Default Column Data Description
outputCol string binarized_image image struct (Image schema)

Example:

from pyspark.ml import PipelineModel

from sparkocr.transformers import *
from sparkocr.utils import display_image

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

adaptive_thresholding = ImageAdaptiveThresholding() \
    .setInputCol("scaled_image") \
    .setOutputCol("binarized_image") \
    .setBlockSize(21) \
    .setOffset(73)

pipeline = PipelineModel(stages=[
            binary_to_image,
            adaptive_thresholding
        ])

result = pipeline.transform(df)

for r in result.select("image", "corrected_image").collect():
    display_image(r.image)
    display_image(r.corrected_image)
// Implemented only for Python

Original image:

original

Binarized image:

binarized

ImageScaler

ImageScaler scales image by provided scale factor or needed output size. It supports keeping original ratio of image by padding the image in case fixed output size.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
scaleFactor double 1.0 scale factor
keepRatio boolean false Keep original ratio of image
width int 0 Output width of image
height int 0 Outpu height of imgae

Output Columns

Param name Type Default Column Data Description
outputCol string scaled_image scaled image struct (Image schema)

Example:

from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read \
  .format("binaryFile") \
  .load(imagePath) \
  .asImage("image")

transformer = ImageScaler() \
  .setInputCol("image") \
  .setOutputCol("scaled_image") \
  .setScaleFactor(0.5)

data = transformer.transform(df)
data.show()
import com.johnsnowlabs.ocr.transformers.ImageScaler
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val transformer = new ImageScaler()
  .setInputCol("image")
  .setOutputCol("scaled_image")
  .setScaleFactor(0.5)

val data = transformer.transform(df)
data.storeImage("scaled_image")

ImageAdaptiveScaler

ImageAdaptiveScaler detects font size and scales image for have desired font size.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
desiredSize int 34 desired size of font in pixels

Output Columns

Param name Type Default Column Data Description
outputCol string scaled_image scaled image struct (Image schema)

Example:

from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read \
  .format("binaryFile") \
  .load(imagePath) \
  .asImage("image")

transformer = ImageAdaptiveScaler() \
  .setInputCol("image") \
  .setOutputCol("scaled_image") \
  .setDesiredSize(34)

data = transformer.transform(df)
data.show()
import com.johnsnowlabs.ocr.transformers.ImageAdaptiveScaler
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val transformer = new ImageAdaptiveScaler()
  .setInputCol("image")
  .setOutputCol("scaled_image")
  .setDesiredSize(34)

val data = transformer.transform(df)
data.storeImage("scaled_image")

ImageSkewCorrector

ImageSkewCorrector detects skew of the image and rotates it.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
rotationAngle double 0.0 rotation angle
automaticSkewCorrection boolean true enables/disables adaptive skew correction
halfAngle double 5.0 half the angle(in degrees) that will be considered for correction
resolution double 1.0 The step size(in degrees) that will be used for generating correction angle candidates

Output Columns

Param name Type Default Column Data Description
outputCol string corrected_image corrected image struct (Image schema)

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *
from sparkocr.utils import display_images

imagePath = "path to image"

# Read image file as binary file
df = spark.read \
    .format("binaryFile") \
    .load(imagePath) 

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

skew_corrector = ImageSkewCorrector() \
    .setInputCol("image") \
    .setOutputCol("corrected_image") \
    .setAutomaticSkewCorrection(True)


# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    skew_corrector
])

data = pipeline.transform(df)

display_images(data, "corrected_image")
import com.johnsnowlabs.ocr.transformers.ImageSkewCorrector
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val transformer = new ImageSkewCorrector()
  .setInputCol("image")
  .setOutputCol("corrected_image")
  .setAutomaticSkewCorrection(true)

val data = transformer.transform(df)
data.storeImage("corrected_image")

Original image:

original

Corrected image:

corrected

ImageNoiseScorer

ImageNoiseScorer computes noise score for each region.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)
inputRegionsCol string regions regions

Parameters

Param name Type Default Description
method NoiseMethod string NoiseMethod.RATIO method of computation noise score

Output Columns

Param name Type Default Column Data Description
outputCol string noisescores noise score for each region

Example:

from pyspark.ml import PipelineModel

from sparkocr.transformers import *
from sparkocr.enums import NoiseMethod

imagePath = "path to image"

# Read image file as binary file
df = spark.read \
  .format("binaryFile") \
  .load(imagePath) \
  .asImage("image")

# Define transformer for detect regions
layoutAnalyzer = ImageLayoutAnalyzer() \
  .setInputCol("image") \
  .setOutputCol("regions")

# Define transformer for compute noise level for each region
noisescorer = ImageNoiseScorer() \
  .setInputCol("image") \
  .setOutputCol("noiselevel") \
  .setInputRegionsCol("regions") \
  .setMethod(NoiseMethod.VARIANCE)

# Define pipeline
pipeline = Pipeline()
pipeline.setStages(Array(
  layoutAnalyzer,
  noisescorer
))

data = pipeline.transform(df)

data.select("path", "noiselevel").show()
import org.apache.spark.ml.Pipeline

import com.johnsnowlabs.ocr.transformers.{ImageNoiseScorer, ImageLayoutAnalyzer}
import com.johnsnowlabs.ocr.NoiseMethod
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

// Define transformer for detect regions
val layoutAnalyzer = new ImageLayoutAnalyzer()
  .setInputCol("image")
  .setOutputCol("regions")

// Define transformer for compute noise level for each region
val noisescorer = new ImageNoiseScorer()
  .setInputCol("image")
  .setOutputCol("noiselevel")
  .setInputRegionsCol("regions")
  .setMethod(NoiseMethod.VARIANCE)

// Define pipeline
val pipeline = new Pipeline()
pipeline.setStages(Array(
  layoutAnalyzer,
  noisescorer
))

val modelPipeline = pipeline.fit(spark.emptyDataFrame)

val data = modelPipeline.transform(df)

data.select("path", "noiselevel").show()

Output:

+------------------+-----------------------------------------------------------------------------+
|path              |noiselevel                                                                   |
+------------------+-----------------------------------------------------------------------------+
|file:./noisy.png  |[32.01805641767766, 32.312916551193354, 29.99257352247787, 30.62470388308217]|
+------------------+-----------------------------------------------------------------------------+

ImageRemoveObjects

python only

ImageRemoveObjects to remove background objects. It supports removing:

  • objects less than elements of font with minSizeFont size
  • objects less than minSizeObject
  • holes less than minSizeHole
  • objects more than maxSizeObject

Input Columns

Param name Type Default Column Data Description
inputCol string None image struct (Image schema)

Parameters

Param name Type Default Description
minSizeFont int 10 Min size font in pt.
minSizeObject int None Min size of object which will keep on image [*].
connectivityObject int 0 The connectivity defining the neighborhood of a pixel.
minSizeHole int None Min size of hole which will keep on image[ *].
connectivityHole int 0 The connectivity defining the neighborhood of a pixel.
maxSizeObject int None Max size of object which will keep on image [*].
connectivityMaxObject int 0 The connectivity defining the neighborhood of a pixel.

[*] : None value disables removing objects.

Output Columns

Param name Type Default Column Data Description
outputCol string None scaled image struct (Image schema)

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

remove_objects = ImageRemoveObjects() \
    .setInputCol("image") \
    .setOutputCol("corrected_image") \
    .setMinSizeObject(20)

pipeline = PipelineModel(stages=[
    binary_to_image,
    remove_objects
])

data = pipeline.transform(df)
// Implemented only for Python

ImageMorphologyOperation

python only

ImageMorphologyOperationis a transformer for applying morphological operations to image.

It supports following operation:

  • Erosion
  • Dilation
  • Opening
  • Closing

Input Columns

Param name Type Default Column Data Description
inputCol string None image struct (Image schema)

Parameters

Param name Type Default Description
operation MorphologyOperationType MorphologyOperationType.OPENING Operation type
kernelShape KernelShape KernelShape.DISK Kernel shape.
kernelSize int 1 Kernel size in pixels.

Output Columns

Param name Type Default Column Data Description
outputCol string None scaled image struct (Image schema)

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image") \
    .setOperation(MorphologyOperationType.OPENING)

adaptive_thresholding = ImageAdaptiveThresholding() \
    .setInputCol("image") \
    .setOutputCol("corrected_image") \
    .setBlockSize(75) \
    .setOffset(0)

opening = ImageMorphologyOperation() \
    .setInputCol("corrected_image") \
    .setOutputCol("opening_image") \
    .setkernelSize(1)

pipeline = PipelineModel(stages=[
    binary_to_image,
    adaptive_thresholding,
    opening
])

result = pipeline.transform(df)

for r in result.select("image", "corrected_image").collect():
    display_image(r.image)
    display_image(r.corrected_image)
// Implemented only for Python

Original image:

original

Opening image:

opening

ImageCropper

ImageCropperis a transformer for cropping image.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
cropRectangle Rectangle Rectangle(0,0,0,0) Image rectangle.
cropSquareType CropSquareType CropSquareType.TOP_LEFT Type of square.

Output Columns

Param name Type Default Column Data Description
outputCol string cropped_image scaled image struct (Image schema)

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image") \
    .setOperation(MorphologyOperationType.OPENING)

cropper = ImageCropper() \
    .setInputCol("image") \
    .setOutputCol("cropped_image") \
    .setCropRectangle((0, 0, 200, 110))

pipeline = PipelineModel(stages=[
    binary_to_image,
    cropper
])

result = pipeline.transform(df)

for r in result.select("image", "cropped_image").collect():
    display_image(r.image)
    display_image(r.cropped_image)
import com.johnsnowlabs.ocr.transformers.ImageAdaptiveScaler
import com.johnsnowlabs.ocr.OcrContext.implicits._
import java.awt.Rectangle

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val rectangle: Rectangle = new Rectangle(0, 0, 200, 110)
val cropper: ImageCropper = new ImageCropper()
  .setInputCol("image")
  .setOutputCol("cropped_image")
  .setCropRectangle(rectangle)

val data = transformer.transform(df)
data.storeImage("cropped_image")

Splitting image to regions

ImageLayoutAnalyzer

ImageLayoutAnalyzer analyzes the image and determines regions of text.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
pageSegMode PageSegmentationMode AUTO page segmentation mode
pageIteratorLevel PageIteratorLevel BLOCK page iteration level
ocrEngineMode EngineMode LSTM_ONLY OCR engine mode

Output Columns

Param name Type Default Column Data Description
outputCol string region array of [Coordinaties]ocr_structures#coordinate-schema)

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

# Define transformer for detect regions
layout_analyzer = ImageLayoutAnalyzer() \
  .setInputCol("image") \
  .setOutputCol("regions")

pipeline = PipelineModel(stages=[
    binary_to_image,
    layout_analyzer
])

data = pipeline.transform(df)
data.show()
import org.apache.spark.ml.Pipeline

import com.johnsnowlabs.ocr.transformers.{ImageSplitRegions, ImageLayoutAnalyzer}
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

// Define transformer for detect regions
val layoutAnalyzer = new ImageLayoutAnalyzer()
  .setInputCol("image")
  .setOutputCol("regions")

val data = layoutAnalyzer.transform(df)

data.show()

ImageSplitRegions

ImageSplitRegions splits image into regions.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)
inputRegionsCol string region array of [Coordinaties]ocr_structures#coordinate-schema)

Parameters

Param name Type Default Description
explodeCols Array[string]   Columns which need to explode
rotated boolean False Support rotated regions

Output Columns

Param name Type Default Column Data Description
outputCol string region_image image struct (Image schema)

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

# Define transformer for detect regions
layout_analyzer = ImageLayoutAnalyzer() \
  .setInputCol("image") \
  .setOutputCol("regions")

splitter = ImageSplitRegions()
  .setInputCol("image")
  .setRegionCol("regions")
  .setOutputCol("region_image")

# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    layout_analyzer,
    splitter
])

data = pipeline.transform(df)

data.show()
import org.apache.spark.ml.Pipeline

import com.johnsnowlabs.ocr.transformers.{ImageSplitRegions, ImageLayoutAnalyzer}
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

// Define transformer for detect regions
val layoutAnalyzer = new ImageLayoutAnalyzer()
  .setInputCol("image")
  .setOutputCol("regions")

val splitter = new ImageSplitRegions()
  .setInputCol("image")
  .setRegionCol("regions")
  .setOutputCol("region_image")

// Define pipeline
val pipeline = new Pipeline()
pipeline.setStages(Array(
  layoutAnalyzer,
  splitter
))

val modelPipeline = pipeline.fit(spark.emptyDataFrame)

val data = pipeline.transform(df)
data.show()

ImageDrawAnnotations

ImageDrawAnnotations draw annotations with label and score to the image.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)
inputChunksCol string region array of Annotation

Parameters

Param name Type Default Description
lineWidth Int 4 Line width for draw rectangles
fontSize Int 12 Font size for render labels and score
rectColor Color Color.black Color of lines

Output Columns

Param name Type Default Column Data Description
outputCol string image_with_chunks image struct (Image schema)

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

ocr = ImageToHocr() \
    .setInputCol("image") \
    .setOutputCol("hocr")

tokenizer = HocrTokenizer() \
    .setInputCol("hocr") \
    .setOutputCol("token")

draw_annotations = ImageDrawAnnotations() \
    .setInputCol("image") \
    .setInputChunksCol("token") \
    .setOutputCol("image_with_annotations") \
    .setFilledRect(False) \
    .setFontSize(40) \
    .setRectColor(Color.red)


# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    ocr,
    tokenizer,
    image_with_annotations
])

result = pipeline.transform(df)
import com.johnsnowlabs.ocr.transformers.*
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val imageToHocr = new ImageToHocr()
  .setInputCol("image")
  .setOutputCol("hocr")

val tokenizer = new HocrTokenizer()
  .setInputCol("hocr")
  .setOutputCol("token")

val draw_annotations = new ImageDrawAnnotations()
  .setInputCol("image")
  .setInputChunksCol("token")
  .setOutputCol("image_with_annotations")
  .setFilledRect(False)
  .setFontSize(40)
  .setRectColor(Color.red)


val pipeline = new Pipeline()
pipeline.setStages(Array(
  imageToHocr,
  tokenizer,
  draw_annotations
))

val modelPipeline = pipeline.fit(df)

val result =  modelPipeline.transform(df)

ImageDrawRegions

ImageDrawRegions draw regions with label and score to the image.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)
inputRegionsCol string region array of [Coordinaties]ocr_structures#coordinate-schema)

Parameters

Param name Type Default Description
lineWidth Int 4 Line width for draw rectangles
fontSize Int 12 Font size for render labels and score
rotated boolean False Support rotated regions
rectColor Color Color.black Color outline for bounding box
filledRect boolean False Enable/Disable filling rectangle
sourceImageHeightCol Int height_dimension Original annotation reference height
sourceImageWidthCol Int width_dimension Original annotation reference width
scaleBoundingBoxes Boolean True sourceImage height & width are required for scaling. Necessary to ensure accurate regions despite image transformations.

Output Columns

Param name Type Default Column Data Description
outputCol string image_with_regions image struct (Image schema)

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *
from sparkocr.enums import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read.format("binaryFile").load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

# Define transformer for detect regions
layout_analyzer = ImageLayoutAnalyzer() \
  .setInputCol("image") \
  .setOutputCol("regions")

draw = ImageDrawRegions() \
  .setInputCol("image") \
  .setRegionCol("regions") \
  .setRectColor(Color.red) \
  .setOutputCol("image_with_regions")

# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    layout_analyzer,
    draw
])

data = pipeline.transform(df)
data.show()
import org.apache.spark.ml.Pipeline
import java.awt.Color

import com.johnsnowlabs.ocr.transformers.{ImageSplitRegions, ImageLayoutAnalyzer}
import com.johnsnowlabs.ocr.OcrContext.implicits._


val imagePath = "path to image"

// Read image file as binary file
val df = spark.read.format("binaryFile").load(imagePath).asImage("image")

// Define transformer for detect regions
val layoutAnalyzer = new ImageLayoutAnalyzer()
  .setInputCol("image")
  .setOutputCol("regions")

val draw = new ImageDrawRegions()
  .setInputCol("image")
  .setRegionCol("regions")
  .setRectColor(Color.RED)
  .setOutputCol("image_with_regions")

// Define pipeline
val pipeline = new Pipeline()
pipeline.setStages(Array(
  layoutAnalyzer,
  draw
))

val modelPipeline = pipeline.fit(spark.emptyDataFrame)

val data = pipeline.transform(df)
data.show()

Characters recognition

Next section describes the estimators for OCR

ImageToText

ImageToText runs OCR for input image, return recognized text to outputCol and positions with font size to ‘positionsCol’ column.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
pageSegMode PageSegmentationMode AUTO page segmentation mode
pageIteratorLevel PageIteratorLevel BLOCK page iteration level
ocrEngineMode EngineMode LSTM_ONLY OCR engine mode
language Language Language.ENG language
confidenceThreshold int 0 Confidence threshold.
ignoreResolution bool false Ignore resolution from metadata of image.
ocrParams array of strings [] Array of Ocr params in key=value format.
pdfCoordinates bool false Transform coordinates in positions to PDF points.
modelData string   Path to the local model data.
modelType ModelType ModelType.BASE Model type
downloadModelData bool false Download model data from JSL S3
withSpaces bool false Include spaces to output positions.
keepLayout bool false Keep layout of text at result.
outputSpaceCharacterWidth int 8 Output space character width in pts for layout keeper.

Output Columns

Param name Type Default Column Data Description
outputCol string text Recognized text
positionsCol string positions Positions of each block of text (related to pageIteratorLevel) in PageMatrix

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

ocr = ImageToText() \
    .setInputCol("image") \
    .setOutputCol("text") \
    .setOcrParams(["preserve_interword_spaces=1", ])

# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    ocr
])

data = pipeline.transform(df)
data.show()
import com.johnsnowlabs.ocr.transformers.ImageToText
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val transformer = new ImageToText()
  .setInputCol("image")
  .setOutputCol("text")
  .setOcrParams(Array("preserve_interword_spaces=1"))

val data = transformer.transform(df)
print(data.select("text").collect()[0].text)

Image:

Pipeline components

Output:

FOREWORD

Electronic design engineers are the true idea men of the electronic
industries. They create ideas and use them in their designs, they stimu-
late ideas in other designers, and they borrow and adapt ideas from
others. One could almost say they feed on and grow on ideas.

ImageToTextV2

ImageToTextV2 is based on the transformers architecture, and combines CV and NLP in one model. It is a visual encoder-decoder model. The Encoder is based on ViT, and the decoder on RoBERTa model.

ImageToTextV2 can work on CPU, but GPU is preferred in order to achieve acceptable performance.

ImageToTextV2 can receive regions representing single line texts, or regions coming from a text detection model.

Input Columns

Param name Type Default Column Data Description
inputCols Array[string] [Pipeline components] Can use as input image struct (Image schema) and regions.

Parameters

Param name Type Default Description
lineTolerance integer 15 Line tolerance in pixels. It’s used for grouping text regions by lines.
borderWidth integer 5 A value of more than 0 enables to border text regions with width equal to the value of the parameter.
spaceWidth integer 10 A value of more than 0 enables to add white spaces between words on the image.

Output Columns

Param name Type Default Column Data Description
outputCol string text Recognized text

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

text_detector = ImageTextDetectorV2 \
    .pretrained("image_text_detector_v2", "en", "clinical/ocr") \
    .setInputCol("image") \
    .setOutputCol("text_regions") \
    .setWithRefiner(True) \
    .setSizeThreshold(20)

ocr = ImageToTextV2.pretrained("ocr_base_printed", "en", "clinical/ocr") \
    .setInputCols(["image", "text_regions"]) \
    .setOutputCol("text")

# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    text_detector,
    ocr
])

data = pipeline.transform(df)
data.show()
not implemented

Image:

Pipeline components

Output:

STARBUCKS STORE #10208
11302 EUCLID AVENUE
CLEVELAND, OH (216) 229-0749
CHK 664290
12/07/2014 06:43 PM
1912003 DRAWER: 2. REG: 2
VT PEP MOCHA 4.95
SBUX CARD 4.95
XXXXXXXXXXXX3228
SUBTOTAL $4.95
TOTAL $4.95
CHANGE DUE $0.00
---- CHECK CLOSED
12/07/2014 06:43 PM
SBUX CARD X3228 NEW BALANCE: 37.45
CARD IS REGISTERED

ImageToTextPdf

ImageToTextPdf runs OCR for input image, render recognized text to the PDF as an invisible text layout with an original image.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)
originCol string path path to the original file
pageNumCol string pagenum for compatibility with another transformers

Parameters

Param name Type Default Description
ocrParams array of strings [] Array of Ocr params in key=value format.

Output Columns

Param name Type Default Column Data Description
outputCol string pdf Recognized text rendered to PDF
from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

ocr = ImageToTextPdf() \
    .setInputCol("image") \
    .setOutputCol("pdf")

# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    ocr
])

data = pipeline.transform(df)
data.show()
import com.johnsnowlabs.ocr.transformers.*
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val transformer = new ImageToTextPdf()
  .setInputCol("image")
  .setOutputCol("pdf")

val data = transformer.transform(df)
data.show()

ImageToHocr

ImageToHocr runs OCR for input image, return recognized text and bounding boxes to outputCol column in HOCR format.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
pageSegMode PageSegmentationMode AUTO page segmentation mode
pageIteratorLevel PageIteratorLevel BLOCK page iteration level
ocrEngineMode EngineMode LSTM_ONLY OCR engine mode
language string eng language
ignoreResolution bool true Ignore resolution from metadata of image.
ocrParams array of strings [] Array of Ocr params in key=value format.

Output Columns

Param name Type Default Column Data Description
outputCol string hocr Recognized text

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

ocr = ImageToHocr() \
    .setInputCol("image") \
    .setOutputCol("hocr")

# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    ocr
])

data = pipeline.transform(df)
data.show()
import com.johnsnowlabs.ocr.transformers.ImageToHocr
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val transformer = new ImageToHocr()
  .setInputCol("image")
  .setOutputCol("hocr")

val data = transformer.transform(df)
print(data.select("hocr").collect()[0].hocr)

Image:

Pipeline components

Output:

  <div class='ocr_page' id='page_1' title='image ""; bbox 0 0 1280 467; ppageno 0'>
   <div class='ocr_carea' id='block_1_1' title="bbox 516 80 780 114">
    <p class='ocr_par' id='par_1_1' lang='eng' title="bbox 516 80 780 114">
     <span class='ocr_line' id='line_1_1' title="bbox 516 80 780 114; baseline 0 -1; x_size 44; x_descenders 11; x_ascenders 11">
      <span class='ocrx_word' id='word_1_1' title='bbox 516 80 780 114; x_wconf 96'>FOREWORD</span>
     </span>
    </p>
   </div>
   <div class='ocr_carea' id='block_1_2' title="bbox 40 237 1249 425">
    <p class='ocr_par' id='par_1_2' lang='eng' title="bbox 40 237 1249 425">
     <span class='ocr_line' id='line_1_2' title="bbox 122 237 1249 282; baseline 0.001 -12; x_size 45; x_descenders 12; x_ascenders 13">
      <span class='ocrx_word' id='word_1_2' title='bbox 122 237 296 270; x_wconf 96'>Electronic</span>
      <span class='ocrx_word' id='word_1_3' title='bbox 308 237 416 281; x_wconf 96'>design</span>
      <span class='ocrx_word' id='word_1_4' title='bbox 428 243 588 282; x_wconf 96'>engineers</span>
      <span class='ocrx_word' id='word_1_5' title='bbox 600 250 653 271; x_wconf 96'>are</span>
      <span class='ocrx_word' id='word_1_6' title='bbox 665 238 718 271; x_wconf 96'>the</span>
      <span class='ocrx_word' id='word_1_7' title='bbox 731 246 798 272; x_wconf 97'>true</span>
      <span class='ocrx_word' id='word_1_8' title='bbox 810 238 880 271; x_wconf 96'>idea</span>
      <span class='ocrx_word' id='word_1_9' title='bbox 892 251 963 271; x_wconf 96'>men</span>
      <span class='ocrx_word' id='word_1_10' title='bbox 977 238 1010 272; x_wconf 96'>of</span>
      <span class='ocrx_word' id='word_1_11' title='bbox 1021 238 1074 271; x_wconf 96'>the</span>
      <span class='ocrx_word' id='word_1_12' title='bbox 1086 239 1249 272; x_wconf 96'>electronic</span>
     </span>
     <span class='ocr_line' id='line_1_3' title="bbox 41 284 1248 330; baseline 0.002 -13; x_size 44; x_descenders 11; x_ascenders 12">
      <span class='ocrx_word' id='word_1_13' title='bbox 41 284 214 318; x_wconf 96'>industries.</span>
      <span class='ocrx_word' id='word_1_14' title='bbox 227 284 313 328; x_wconf 96'>They</span>
      <span class='ocrx_word' id='word_1_15' title='bbox 324 292 427 319; x_wconf 96'>create</span>
      <span class='ocrx_word' id='word_1_16' title='bbox 440 285 525 319; x_wconf 96'>ideas</span>
      <span class='ocrx_word' id='word_1_17' title='bbox 537 286 599 318; x_wconf 96'>and</span>
      <span class='ocrx_word' id='word_1_18' title='bbox 611 298 668 319; x_wconf 96'>use</span>
      <span class='ocrx_word' id='word_1_19' title='bbox 680 286 764 319; x_wconf 96'>them</span>
      <span class='ocrx_word' id='word_1_20' title='bbox 777 291 808 319; x_wconf 96'>in</span>
      <span class='ocrx_word' id='word_1_21' title='bbox 821 286 900 319; x_wconf 96'>their</span>
      <span class='ocrx_word' id='word_1_22' title='bbox 912 286 1044 330; x_wconf 96'>designs,</span>
      <span class='ocrx_word' id='word_1_23' title='bbox 1058 286 1132 330; x_wconf 93'>they</span>
      <span class='ocrx_word' id='word_1_24' title='bbox 1144 291 1248 320; x_wconf 92'>stimu-</span>
     </span>
     <span class='ocr_line' id='line_1_4' title="bbox 42 332 1247 378; baseline 0.002 -14; x_size 44; x_descenders 12; x_ascenders 12">
      <span class='ocrx_word' id='word_1_25' title='bbox 42 332 103 364; x_wconf 97'>late</span>
      <span class='ocrx_word' id='word_1_26' title='bbox 120 332 204 365; x_wconf 96'>ideas</span>
      <span class='ocrx_word' id='word_1_27' title='bbox 223 337 252 365; x_wconf 96'>in</span>
      <span class='ocrx_word' id='word_1_28' title='bbox 271 333 359 365; x_wconf 96'>other</span>
      <span class='ocrx_word' id='word_1_29' title='bbox 376 333 542 377; x_wconf 96'>designers,</span>
      <span class='ocrx_word' id='word_1_30' title='bbox 561 334 625 366; x_wconf 96'>and</span>
      <span class='ocrx_word' id='word_1_31' title='bbox 643 334 716 377; x_wconf 96'>they</span>
      <span class='ocrx_word' id='word_1_32' title='bbox 734 334 855 366; x_wconf 96'>borrow</span>
      <span class='ocrx_word' id='word_1_33' title='bbox 873 334 934 366; x_wconf 96'>and</span>
      <span class='ocrx_word' id='word_1_34' title='bbox 954 335 1048 378; x_wconf 96'>adapt</span>
      <span class='ocrx_word' id='word_1_35' title='bbox 1067 334 1151 367; x_wconf 96'>ideas</span>
      <span class='ocrx_word' id='word_1_36' title='bbox 1169 334 1247 367; x_wconf 96'>from</span>
     </span>
     <span class='ocr_line' id='line_1_5' title="bbox 40 379 1107 425; baseline 0.002 -13; x_size 45; x_descenders 12; x_ascenders 12">
      <span class='ocrx_word' id='word_1_37' title='bbox 40 380 151 412; x_wconf 96'>others.</span>
      <span class='ocrx_word' id='word_1_38' title='bbox 168 383 238 412; x_wconf 96'>One</span>
      <span class='ocrx_word' id='word_1_39' title='bbox 252 379 345 412; x_wconf 96'>could</span>
      <span class='ocrx_word' id='word_1_40' title='bbox 359 380 469 413; x_wconf 96'>almost</span>
      <span class='ocrx_word' id='word_1_41' title='bbox 483 392 537 423; x_wconf 96'>say</span>
      <span class='ocrx_word' id='word_1_42' title='bbox 552 381 626 424; x_wconf 96'>they</span>
      <span class='ocrx_word' id='word_1_43' title='bbox 641 381 712 414; x_wconf 96'>feed</span>
      <span class='ocrx_word' id='word_1_44' title='bbox 727 393 767 414; x_wconf 96'>on</span>
      <span class='ocrx_word' id='word_1_45' title='bbox 783 381 845 414; x_wconf 96'>and</span>
      <span class='ocrx_word' id='word_1_46' title='bbox 860 392 945 425; x_wconf 97'>grow</span>
      <span class='ocrx_word' id='word_1_47' title='bbox 959 393 999 414; x_wconf 96'>on</span>
      <span class='ocrx_word' id='word_1_48' title='bbox 1014 381 1107 414; x_wconf 95'>ideas.</span>
     </span>
    </p>
   </div>
  </div>

ImageBrandsToText

ImageBrandsToText runs OCR for specified brands of input image, return recognized text to outputCol and positions with font size to ‘positionsCol’ column.

Input Columns

Param name Type Default Column Data Description
inputCol string image image struct (Image schema)

Parameters

Param name Type Default Description
pageSegMode PageSegmentationMode AUTO page segmentation mode
pageIteratorLevel PageIteratorLevel BLOCK page iteration level
ocrEngineMode EngineMode LSTM_ONLY OCR engine mode
language string eng language
confidenceThreshold int 0 Confidence threshold.
ignoreResolution bool true Ignore resolution from metadata of image.
ocrParams array of strings [] Array of Ocr params in key=value format.
brandsCoords string   Json with coordinates of brands.

Output Columns

Param name Type Default Column Data Description
outputCol structure image_brands Structure with recognized text from brands.
textCol string text Recognized text
positionsCol string positions Positions of each block of text (related to pageIteratorLevel)

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

ocr = ImageBrandsToText() \
    .setInputCol("image") \
    .setOutputCol("text") \
    .setBrandsCoords("""[
                     {
                        "name":"part_one",
                        "rectangle":{
                           "x":286,
                           "y":65,
                           "width":542,
                           "height":342
                        }
                     },
                     {
                        "name":"part_two",
                        "rectangle":{
                           "x":828,
                           "y":65,
                           "width":1126,
                           "height":329
                        }
                     }
                  ]""")

# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    ocr
])

data = pipeline.transform(df)
data.show()
import com.johnsnowlabs.ocr.transformers.ImageToText
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val transformer = new ImageBrandsToText()
  .setInputCol("image")
  .setOutputCol("text")
  .setBrandsCoordsStr(
        """
          [
             {
                "name":"part_one",
                "rectangle":{
                   "x":286,
                   "y":65,
                   "width":542,
                   "height":342
                }
             },
             {
                "name":"part_two",
                "rectangle":{
                   "x":828,
                   "y":65,
                   "width":1126,
                   "height":329
                }
             }
          ]
          """.stripMargin)

val data = transformer.transform(df)
print(data.select("text").collect()[0].text)

Other

Next section describes the extra transformers

PositionFinder

PositionFinder find the position of input text entities in the original document.

Input Columns

Param name Type Default Column Data Description
inputCols string image Input annotations columns
pageMatrixCol string   Column name for Page Matrix schema

Parameters

Param name Type Default Description
matchingWindow int 10 Textual range to match in context, applies in both direction
windowPageTolerance boolean true whether or not to increase tolerance as page number grows
padding int 5 padding for area

Output Columns

Param name Type Default Column Data Description
outputCol string   Name of output column for store coordinates.

Example:

from pyspark.ml import Pipeline

from sparkocr.transformers import *
from sparknlp.annotator import *
from sparknlp.base import *

pdfPath = "path to pdf"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

pdf_to_text = PdfToText() \
    .setInputCol("content") \
    .setOutputCol("text") \
    .setPageNumCol("page") \
    .setSplitPage(False)

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

sentence_detector = SentenceDetector() \
    .setInputCols(["document"]) \
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")

entity_extractor = TextMatcher() \
    .setInputCols("sentence", "token") \
    .setEntities("./sparkocr/resources/test-chunks.txt", ReadAs.TEXT) \
    .setOutputCol("entity")

position_finder = PositionFinder() \
    .setInputCols("entity") \
    .setOutputCol("coordinates") \
    .setPageMatrixCol("positions") \
    .setMatchingWindow(10) \
    .setPadding(2)

pipeline = Pipeline(stages=[
    pdf_to_text,
    document_assembler,
    sentence_detector,
    tokenizer,
    entity_extractor,
    position_finder
])

results = pipeline.fit(df).transform(df)
results.show()
import com.johnsnowlabs.ocr.transformers._
import com.johnsnowlabs.nlp.{DocumentAssembler, SparkAccessor}
import com.johnsnowlabs.nlp.annotators._
import com.johnsnowlabs.nlp.util.io.ReadAs

val pdfPath = "path to pdf"

// Read PDF file as binary file
val df = spark.read.format("binaryFile").load(pdfPath)

val pdfToText = new PdfToText()
  .setInputCol("content")
  .setOutputCol("text")
  .setSplitPage(false)

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentenceDetector = new SentenceDetector()
  .setInputCols(Array("document"))
  .setOutputCol("sentence")

val tokenizer = new Tokenizer()
  .setInputCols(Array("sentence"))
  .setOutputCol("token")

val entityExtractor = new TextMatcher()
  .setInputCols("sentence", "token")
  .setEntities("test-chunks.txt", ReadAs.TEXT)
  .setOutputCol("entity")

val positionFinder = new PositionFinder()
  .setInputCols("entity")
  .setOutputCol("coordinates")
  .setPageMatrixCol("positions")
  .setMatchingWindow(10)
  .setPadding(2)

// Create pipeline
val pipeline = new Pipeline()
  .setStages(Array(
    pdfToText,
    documentAssembler,
    sentenceDetector,
    tokenizer,
    entityExtractor,
    positionFinder
  ))

val results = pipeline.fit(df).transform(df)

results.show()

UpdateTextPosition

UpdateTextPosition update output text and keep old coordinates of original document.

Input Columns

Param name Type Default Column Data Description
inputCol string positions Сolumn name with original positions struct
InputText string replace_text Column name for New Text to replace Old one

Output Columns

Param name Type Default Column Data Description
outputCol string output_positions Name of output column for updated positions struct.

Example:

from pyspark.ml import Pipeline
from sparkocr.transformers import *
from sparknlp.annotator import *
from sparknlp.base import *

pdfPath = "path to pdf"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

pdf_to_text = PdfToText() \
    .setInputCol("content") \
    .setOutputCol("text") \
    .setPageNumCol("page") \
    .setSplitPage(False)

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

sentence_detector = SentenceDetector() \
    .setInputCols(["document"]) \
    .setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("tokens")

spell = NorvigSweetingModel().pretrained("spellcheck_norvig", "en") \
    .setInputCols("tokens") \
    .setOutputCol("spell")

tokenAssem = TokenAssembler() \
    .setInputCols("spell") \
    .setOutputCol("newDocs")

updatedText = UpdateTextPosition() \
    .setInputCol("positions") \
    .setOutputCol("output_positions") \
    .setInputText("newDocs.result")

pipeline = Pipeline(stages=[
    document_assembler,
    sentence_detector,
    tokenizer,
    spell,
    tokenAssem,
    updatedText
])

results = pipeline.fit(df).transform(df)
results.show()
import com.johnsnowlabs.nlp.annotators.Tokenizer
import com.johnsnowlabs.nlp.annotators.sbd.pragmatic.SentenceDetector
import com.johnsnowlabs.nlp.annotators.spell.norvig.NorvigSweetingModel
import com.johnsnowlabs.nlp.{DocumentAssembler, TokenAssembler}
import com.johnsnowlabs.ocr.transformers._
import org.apache.spark.ml.Pipeline

val pdfPath = "path to pdf"

// Read PDF file as binary file
val df = spark.read.format("binaryFile").load(pdfPath)

val pdfToText = new PdfToText()
  .setInputCol("content")
  .setOutputCol("text")

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentence = new SentenceDetector()
  .setInputCols("document")
  .setOutputCol("sentence")
   
val token = new Tokenizer()
  .setInputCols("document")
  .setOutputCol("tokens")
   
val spell = NorvigSweetingModel.pretrained("spellcheck_norvig", "en")
  .setInputCols("tokens")
  .setOutputCol("spell")
    
val tokenAssem = new TokenAssembler()
  .setInputCols("spell")
  .setOutputCol("newDocs")
    
val updatedText = new UpdateTextPosition()
  .setInputCol("positions")
  .setOutputCol("output_positions")
  .setInputText("newDocs.result")
    
val pipeline = new Pipeline()
  .setStages(Array(
    pdfToText,
    documentAssembler,
    sentence,
    token,
    spell,
    tokenAssem,
    updatedText
  ))

val results = pipeline.fit(df).transform(df)

results.show()

FoundationOneReportParser

FoundationOneReportParser is a transformer for parsing FoundationOne reports. Current implementation supports parsing patient info, genomic, biomarker findings and gene lists from appendix. Output format is json.

Input Columns

Param name Type Default Column Data Description
inputCol string text Сolumn name with text of report
originCol string path path to the original file

Output Columns

Param name Type Default Column Data Description
outputCol string report Name of output column with report in json format.

Example:

from pyspark.ml import Pipeline
from sparkocr.transformers import *
from sparkocr.enums import TextStripperType


pdfPath = "path to pdf"

# Read PDF file as binary file
df = spark.read.format("binaryFile").load(pdfPath)

pdf_to_text = PdfToText()
pdf_to_text.setInputCol("content")
pdf_to_text.setOutputCol("text")
pdf_to_text.setSplitPage(False)
pdf_to_text.setTextStripper(TextStripperType.PDF_LAYOUT_TEXT_STRIPPER)

genomic_parser = FoundationOneReportParser()
genomic_parser.setInputCol("text")
genomic_parser.setOutputCol("report")

report = genomic_parser.transform(pdf_to_text.transform(df)).collect()
import com.johnsnowlabs.ocr.transformers._
import org.apache.spark.ml.Pipeline

val pdfPath = "path to pdf"

// Read PDF file as binary file
val df = spark.read.format("binaryFile").load(pdfPath)

val pdfToText = new PdfToText()
  .setInputCol("content")
  .setOutputCol("text")
  .setSplitPage(false)
  .setTextStripper(TextStripperType.PDF_LAYOUT_TEXT_STRIPPER)

val genomicsParser = new FoundationOneReportParser()
      .setInputCol("text")
      .setOutputCol("report")

val pipeline = new Pipeline()
pipeline.setStages(Array(
  pdfToText,
  genomicsParser
))

val modelPipeline = pipeline.fit(df)

val report =  modelPipeline.transform(df)

Output:

{
  "Patient" : {
    "disease" : "Unknown primary melanoma",
    "name" : "Lekavich Gloria",
    "date_of_birth" : "11 November 1926",
    "sex" : "Female",
    "medical_record" : "11111"
  },
  "Physician" : {
    "ordering_physician" : "Genes Pinley",
    "medical_facility" : "Health Network Cancer Institute",
    "additional_recipient" : "Nath",
    "medical_facility_id" : "202051",
    "pathologist" : "Manqju Nwath"
  },
  "Specimen" : {
    "specimen_site" : "Rectum",
    "specimen_id" : "AVS 1A",
    "specimen_type" : "Slide",
    "date_of_collection" : "20 March 2015",
    "specimen_received" : "30 March 2015 "
  },
  "Biomarker_findings" : [ {
    "name" : "Tumor Mutation Burden",
    "state" : "TMB-Low (3Muts/Mb)",
    "actionability" : "No therapies or clinical trials. "
  } ],
  "Genomic_findings" : [ {
    "name" : "FLT3",
    "state" : "amplification",
    "therapies_with_clinical_benefit_in_patient_tumor_type" : [ "none" ],
    "therapies_with_clinical_benefit_in_other_tumor_type" : [ "Sorafenib", "Sunitinib", "Ponatinib" ]
  }
 ],
 "Appendix" : {
    "dna_gene_list" : [ "ABL1", "ACVR1B", "AKT1", ....  ],
    "dna_gene_list_rearrangement" : [ "ALK", "BCL2", "BCR", ....  ],
    "additional_assays" : [ "Tumor Mutation  Burden  (TMB)", "Microsatellite  Status  (MS)" ]
  }
}

HocrDocumentAssembler

HocrDocumentAssembler prepares data into a format that is processable by Spark NLP.

Output Annotator Type: DOCUMENT

Input Columns

Param name Type Default Column Data Description
inputCol string hocr Сolumn name with HOCR of the document

Output Columns

Param name Type Default Column Data Description
outputCol string document Name of output column.

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

ocr = ImageToHocr() \
    .setInputCol("image") \
    .setOutputCol("hocr")

hocr_document_assembler = HocrDocumentAssembler() \
  .setInputCol("hocr") \
  .setOutputCol("document") 

# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    ocr,
    hocr_document_assembler
])

result = pipeline.transform(df)
result.select("document").show()
import com.johnsnowlabs.ocr.transformers.*
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val imageToHocr = new ImageToHocr()
  .setInputCol("image")
  .setOutputCol("hocr")

val hocrDocumentAssembler = HocrDocumentAssembler()
  .setInputCol("hocr")
  .setOutputCol("document")

val pipeline = new Pipeline()
pipeline.setStages(Array(
  imageToHocr,
  hocrDocumentAssembler
))

val modelPipeline = pipeline.fit(df)

val result =  modelPipeline.transform(df)
result.select("document").show()

Output:

+--------------------------------------------------------------------+
| document                                                           |
+--------------------------------------------------------------------+
| [[document, 0, 4392, Patient Nam Financial Numbe Random Hospital...|
+--------------------------------------------------------------------+

HocrTokenizer

HocrTokenizer prepares into a format that is processable by Spark NLP.\ HocrTokenizer puts to metadata coordinates and ocr confidence.

Output Annotator Type: TOKEN

Input Columns

Param name Type Default Column Data Description
inputCol string hocr Сolumn name with HOCR of the document.

Output Columns

Param name Type Default Column Data Description
outputCol string token Name of output column.

Example:

from pyspark.ml import PipelineModel
from sparkocr.transformers import *

imagePath = "path to image"

# Read image file as binary file
df = spark.read 
    .format("binaryFile")
    .load(imagePath)

binary_to_image = BinaryToImage() \
    .setInputCol("content") \
    .setOutputCol("image")

ocr = ImageToHocr() \
    .setInputCol("image") \
    .setOutputCol("hocr")

tokenizer = HocrTokenizer() \
    .setInputCol("hocr") \
    .setOutputCol("token")

# Define pipeline
pipeline = PipelineModel(stages=[
    binary_to_image,
    ocr,
    tokenizer
])

result = pipeline.transform(df)
result.select("token").show()
import com.johnsnowlabs.ocr.transformers.*
import com.johnsnowlabs.ocr.OcrContext.implicits._

val imagePath = "path to image"

// Read image file as binary file
val df = spark.read
  .format("binaryFile")
  .load(imagePath)
  .asImage("image")

val imageToHocr = new ImageToHocr()
  .setInputCol("image")
  .setOutputCol("hocr")

val tokenizer = HocrTokenizer()
  .setInputCol("hocr")
  .setOutputCol("token")

val pipeline = new Pipeline()
pipeline.setStages(Array(
  imageToHocr,
  tokenizer
))

val modelPipeline = pipeline.fit(df)

val result =  modelPipeline.transform(df)
result.select("token").show()

Output:

+--------------------------------------------------------------------+
| token                                                              |
+--------------------------------------------------------------------+
| [[token, 0, 6, patient, [x -> 2905, y -> 527, height -> 56,        |
| confidence -> 95, word -> Patient, width -> 230], []], [token, 8,  |
|10, nam, [x -> 3166, y -> 526, height -> 55, confidence -> 95, word |
|-> Nam, width -> 158], []] ...                                      |
+--------------------------------------------------------------------+

Last updated