Mapping ICDO Codes with Their Corresponding SNOMED Codes

Description

This pretrained model maps ICDO codes to corresponding SNOMED codes.

Predicted Entities

Open in Colab Copy S3 URI

How to use

documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("ner_chunk")

sbert_embedder = BertSentenceEmbeddings\
.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("sbert_embeddings")

icdo_resolver = SentenceEntityResolverModel\
.pretrained("sbiobertresolve_icdo_augmented", "en", "clinical/models")\
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setOutputCol("icdo_code")\
.setDistanceFunction("EUCLIDEAN")

chunkerMapper = ChunkMapperModel\
.pretrained("icdo_snomed_mapper", "en", "clinical/models")\
.setInputCols(["icdo_code"])\
.setOutputCol("snomed_mappings")\
.setRels(["snomed_code"])


pipeline = Pipeline(stages = [
documentAssembler,
sbert_embedder,
icdo_resolver,
chunkerMapper
])

model = pipeline.fit(spark.createDataFrame([[""]]).toDF("text"))

light_pipeline= LightPipeline(model)

result = light_pipeline.fullAnnotate("Hepatocellular Carcinoma")
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("ner_chunk")

val sbert_embedder = BertSentenceEmbeddings
.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")
.setInputCols(Array("ner_chunk"))
.setOutputCol("sbert_embeddings")

val icdo_resolver = SentenceEntityResolverModel
.pretrained("sbiobertresolve_icdo_augmented", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setOutputCol("icdo_code")
.setDistanceFunction("EUCLIDEAN")

val chunkerMapper = ChunkMapperModel
.pretrained("icdo_snomed_mapper", "en", "clinical/models")
.setInputCols(Array("icdo_code"))
.setOutputCol("snomed_mappings")
.setRels(Array("snomed_code"))

val pipeline = new Pipeline(stages = Array(
documentAssembler,
sbert_embedder,
icdo_resolver,
chunkerMapper
))

val data = Seq("Hepatocellular Carcinoma").toDS.toDF("text")

val result= pipeline.fit(data).transform(data)
import nlu
nlu.load("en.icdo_to_snomed").predict("""Hepatocellular Carcinoma""")

Results

|    | ner_chunk                | icdo_code   |   snomed_mappings |
|---:|:-------------------------|:------------|------------------:|
|  0 | Hepatocellular Carcinoma | 8170/3      |          25370001 |

Model Information

Model Name: icdo_snomed_mapper
Compatibility: Healthcare NLP 3.5.3+
License: Licensed
Edition: Official
Input Labels: [icdo_code]
Output Labels: [mappings]
Language: en
Size: 127.9 KB

References

This pretrained model maps ICDO codes to corresponding SNOMED codes under the Unified Medical Language System (UMLS).