3.0.3
We are glad to announce that Spark NLP for Healthcare 3.0.3 has been released!
Highlights
- Five new entity resolution models to cover UMLS, HPO and LIONC terminologies.
- New feature for random displacement of dates on deidentification model.
- Five new pretrained pipelines to map terminologies across each other (from UMLS to ICD10, from RxNorm to MeSH etc.)
- AnnotationToolReader support for Spark 2.3. The tool that helps model training on Spark-NLP to leverage data annotated using JSL Annotation Tool now has support for Spark 2.3.
- Updated documentation (Scaladocs) covering more APIs, and examples.
Five new resolver models:
sbiobertresolve_umls_major_concepts
: This model returns CUI (concept unique identifier) codes for Clinical Findings, Medical Devices, Anatomical Structures and Injuries & Poisoning terms.sbiobertresolve_umls_findings
: This model returns CUI (concept unique identifier) codes for 200K concepts from clinical findings.sbiobertresolve_loinc
: Map clinical NER entities to LOINC codes usingsbiobert
.sbluebertresolve_loinc
: Map clinical NER entities to LOINC codes usingsbluebert
.-
sbiobertresolve_HPO
: This model returns Human Phenotype Ontology (HPO) codes for phenotypic abnormalities encountered in human diseases. It also returns associated codes from the following vocabularies for each HPO code:* MeSH (Medical Subject Headings) * SNOMED * UMLS (Unified Medical Language System ) * ORPHA (international reference resource for information on rare diseases and orphan drugs) * OMIM (Online Mendelian Inheritance in Man)
Related Notebook: Resolver Models
New feature on Deidentification Module
- isRandomDateDisplacement(True): Be able to apply a random displacement on obfuscation dates. The randomness is based on the seed.
- Fix random dates when the format is not correct. Now you can repeat an execution using a seed for dates. Random dates will be based on the seed.
Five new healthcare code mapping pipelines:
-
icd10cm_umls_mapping
: This pretrained pipeline maps ICD10CM codes to UMLS codes without using any text data. You’ll just feed white space-delimited ICD10CM codes and it will return the corresponding UMLS codes as a list. If there is no mapping, the original code is returned with no mapping.{'icd10cm': ['M89.50', 'R82.2', 'R09.01'], 'umls': ['C4721411', 'C0159076', 'C0004044']}
-
mesh_umls_mapping
: This pretrained pipeline maps MeSH codes to UMLS codes without using any text data. You’ll just feed white space-delimited MeSH codes and it will return the corresponding UMLS codes as a list. If there is no mapping, the original code is returned with no mapping.{'mesh': ['C028491', 'D019326', 'C579867'], 'umls': ['C0970275', 'C0886627', 'C3696376']}
-
rxnorm_umls_mapping
: This pretrained pipeline maps RxNorm codes to UMLS codes without using any text data. You’ll just feed white space-delimited RxNorm codes and it will return the corresponding UMLS codes as a list. If there is no mapping, the original code is returned with no mapping.{'rxnorm': ['1161611', '315677', '343663'], 'umls': ['C3215948', 'C0984912', 'C1146501']}
-
rxnorm_mesh_mapping
: This pretrained pipeline maps RxNorm codes to MeSH codes without using any text data. You’ll just feed white space-delimited RxNorm codes and it will return the corresponding MeSH codes as a list. If there is no mapping, the original code is returned with no mapping.{'rxnorm': ['1191', '6809', '47613'], 'mesh': ['D001241', 'D008687', 'D019355']}
-
snomed_umls_mapping
: This pretrained pipeline maps SNOMED codes to UMLS codes without using any text data. You’ll just feed white space-delimited SNOMED codes and it will return the corresponding UMLS codes as a list. If there is no mapping, the original code is returned with no mapping.{'snomed': ['733187009', '449433008', '51264003'], 'umls': ['C4546029', 'C3164619', 'C0271267']}
Related Notebook: Healthcare Code Mapping
Versions
- 5.5.0
- 5.4.1
- 5.4.0
- 5.3.3
- 5.3.2
- 5.3.1
- 5.3.0
- 5.2.1
- 5.2.0
- 5.1.4
- 5.1.3
- 5.1.2
- 5.1.1
- 5.1.0
- 5.0.2
- 5.0.1
- 5.0.0
- 4.4.4
- 4.4.3
- 4.4.2
- 4.4.1
- 4.4.0
- 4.3.2
- 4.3.1
- 4.3.0
- 4.2.8
- 4.2.4
- 4.2.3
- 4.2.2
- 4.2.1
- 4.2.0
- 4.1.0
- 4.0.2
- 4.0.0
- 3.5.3
- 3.5.2
- 3.5.1
- 3.5.0
- 3.4.2
- 3.4.1
- 3.4.0
- 3.3.4
- 3.3.2
- 3.3.1
- 3.3.0
- 3.2.3
- 3.2.2
- 3.2.1
- 3.2.0
- 3.1.3
- 3.1.2
- 3.1.1
- 3.1.0
- 3.0.3
- 3.0.2
- 3.0.1
- 3.0.0
- 2.7.6
- 2.7.5
- 2.7.4
- 2.7.3
- 2.7.2
- 2.7.1
- 2.7.0
- 2.6.2
- 2.6.0
- 2.5.5
- 2.5.3
- 2.5.2
- 2.5.0
- 2.4.6
- 2.4.5
- 2.4.2
- 2.4.1
- 2.4.0