Healthcare NLP v4.2.4 Release Notes

 

4.2.4

Highlights

  • New chunk mapper model for matching drugs by categories as well as other brands and names
  • 4 new NER and classification models for Social Determinant of Health
  • Allow fuzzy matching in the ChunkMapper annotator
  • New NameChunkObfuscatorApproach annotator to obfuscate doctor and patient names using a custom external list (consistent name obfuscation)
  • New AssertionChunkConverter annotator to prepare assertion model training dataset from chunk indices
  • New training_log_parser module to parse NER and Assertion Status Detection model training log files
  • Obfuscation of age entities by age groups in Deidentification
  • Controlling the behaviour of unnormalized dates while shifting the days in Deidentification (setUnnormalizedDateMode parameter)
  • Setting default day, months or years for partial dates via DateNormalizer
  • Setting label case sensitivity in AssertionFilterer
  • getClasses method for Zero Shot NER and Zero Shot Relation Extraction models
  • Setting max syntactic distance parameter in RelationExtractionApproach
  • Generic Relation Extraction Model (generic_re) to extract relations between any named entities using syntactic distances
  • Core improvements and bug fixes
  • New and updated notebooks
  • New and updated demos
  • 5 new clinical models and pipelines added & updated in total

New Chunk Mapper Model For Matching Drugs by Categories As Well As Other Brands and Names

We have a new drug_category_mapper chunk mapper model that maps drugs to their categories, other brands and names. It has two categories called main category and subcategory.

Example:

chunkerMapper = ChunkMapperModel.pretrained("drug_category_mapper", "en", "clinical/models")\
    .setInputCols(["ner_chunk"])\
    .setOutputCol("mappings")\
    .setRels(["main_category", "sub_category", "other_name"])\


sample_text= "She is given OxyContin, folic acid, levothyroxine, Norvasc, aspirin, Neurontin."

Result:

+-------------+---------------------+-----------------------------------+-----------+
|    ner_chunk|        main_category|                       sub_category|other_names|
+-------------+---------------------+-----------------------------------+-----------+
|    OxyContin|      Pain Management|                  Opioid Analgesics|     Oxaydo|
|   folic acid|         Nutritionals|            Vitamins, Water-Soluble|    Folvite|
|levothyroxine|Metabolic & Endocrine|                   Thyroid Products|     Levo T|
|      Norvasc|       Cardiovascular|                 Antianginal Agents|   Katerzia|
|      aspirin|       Cardiovascular|Antiplatelet Agents, Cardiovascular|        ASA|
|    Neurontin|          Neurologics|                       GABA Analogs|    Gralise|
+-------------+---------------------+-----------------------------------+-----------+

4 New NER and Classification Models for Social Determinant of Health

We are releasing 4 new NER and Classification models for Social Determinant of Health.

  • ner_sdoh_mentions: Detecting Social Determinants of Health mentions in clinical notes. Predicted entities: sdoh_community, sdoh_economics, sdoh_education, sdoh_environment, behavior_tobacco, behavior_alcohol, behavior_drug.

Example:

ner_model = MedicalNerModel.pretrained("ner_sdoh_mentions", "en", "clinical/models")\
     .setInputCols(["sentence", "token", "embeddings"])\
     .setOutputCol("ner")

text = """Mr. John Smith is a pleasant, cooperative gentleman with a long standing history (20 years) of diverticulitis. He is married and has 3 children. He works in a bank. He denies any alcohol or intravenous drug use. He has been smoking for many years."""

Result:

+----------------+----------------+
|chunk           |ner_label       |
+----------------+----------------+
|married         |sdoh_community  |
|children        |sdoh_community  |
|works           |sdoh_economics  |
|alcohol         |behavior_alcohol|
|intravenous drug|behavior_drug   |
|smoking         |behavior_tobacco|
+----------------+----------------+
  • MedicalBertForSequenceClassification models that can be used in Social Determinant of Health related classification tasks:
model name description predicted entities
bert_sequence_classifier_sdoh_community_absent_status Classifies the clinical texts related to the loss of social support such as a family member or friend in the clinical documents. A discharge summary was classified True for Community-Absent if the discharge summary had passages related to the loss of social support and False if such passages were not found in the discharge summary. True False
bert_sequence_classifier_sdoh_community_present_status Classifies the clinical texts related to social support such as a family member or friend in the clinical documents. A discharge summary was classified True for Community-Present if the discharge summary had passages related to active social support and False if such passages were not found in the discharge summary. True False
bert_sequence_classifier_sdoh_environment_status Classifies the clinical texts related to environment situation such as any indication of housing, homeless or no related passage. A discharge summary was classified as True for the SDOH Environment if there was any indication of housing, False if the patient was homeless and None if there was no related passage. True False None

Example:

sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_sdoh_community_present_status", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("class")

sample_text = ["Right inguinal hernia repair in childhood Cervical discectomy 3 years ago Umbilical hernia repair 2137. Retired schoolteacher, now substitutes. Lives with wife in location 1439. Has a 27 yo son and a 25 yo daughter. Name (NI) past or present smoking hx, no EtOH.",
"Atrial Septal Defect with Right Atrial Thrombus Pulmonary Hypertension Obesity, Obstructive Sleep Apnea. Denies tobacco and ETOH. Works as cafeteria worker."]

Result:

+----------------------------------------------------------------------------------------------------+-------+
|                                                                                                text| result|
+----------------------------------------------------------------------------------------------------+-------+
|Right inguinal hernia repair in childhood Cervical discectomy 3 years ago Umbilical hernia repair...| [True]|
|Atrial Septal Defect with Right Atrial Thrombus Pulmonary Hypertension Obesity, Obstructive Sleep...|[False]|
+----------------------------------------------------------------------------------------------------+-------+

Allow Fuzzy Matching in the ChunkMapper Annotator

There are multiple options to achieve fuzzy matching using the ChunkMapper annotation:

  • Partial Token NGram Fingerprinting: Useful to combine two frequent usecases; when there are noisy non informative tokens at the beginning / end of the chunk and the order of the chunk is not absolutely relevant. i.e. stomach acute pain –> acute pain stomach ; metformin 100 mg –> metformin.
  • Char NGram Fingerprinting: Useful in usecases that involve typos or different spacing patterns for chunks. i.e. head ache / ache head –> headache ; metformini / metformoni / metformni –> metformin
  • Fuzzy Distance (Slow): Useful when the mapping can be defined in terms of edit distance thresholds using functions like char based like Levenshtein, Hamming, LongestCommonSubsequence or token based like Cosine, Jaccard.

The mapping logic will be run in the previous order also ordering by longest key inside each option as an intuitive way to minimize false positives.

Basic Mapper Example:

cm = ChunkMapperApproach() \
        .setInputCols(["ner_chunk"]) \
        .setLowerCase(True) \
        .setRels(["action", "treatment"]) \


text = """The patient was given Lusa Warfarina 5mg and amlodipine 10 MG. 
The patient was given Aspaginaspa, coumadin 5 mg, coumadin, and he has metamorfin"""


# Since mappers only match one-to-one

| ner_chunk          | fixed_chunk | action                | treatment    |
|:-------------------|:------------|:----------------------|:-------------|
| Aspaginaspa        | nan         | nan                   | nan          |
| Lusa Warfarina 5mg | nan         | nan                   | nan          |
| amlodipine 10      | nan         | nan                   | nan          |
| coumadin           | coumadin    | Coagulation Inhibitor | hypertension |
| coumadin 5 mg      | nan         | nan                   | nan          |
| metamorfin         | nan         | nan                   | nan          |

Since mappers only match one-to-one, we see that only 1 chunk has action and teatment in the table above.

Token Fingerprinting Example:

cm = ChunkMapperApproach() \
        .setInputCols(["ner_chunk"]) \
        .setLowerCase(True) \
        .setRels(["action", "treatment"]) \
        .setAllowMultiTokenChunk(True) \
        .setEnableTokenFingerprintMatching(True) \
        .setMinTokenNgramFingerprint(1) \
        .setMaxTokenNgramFingerprint(3) \
        .setMaxTokenNgramDroppingCharsRatio(0.5)

Result:

| ner_chunk           | fixed_chunk     | action                 | treatment    |
|:--------------------|:----------------|:-----------------------|:-------------|
| Aspaginaspa         | nan             | nan                    | nan          |
| Lusa Warfarina 5mg  | Warfarina lusa  | Analgesic              | diabetes     |
| amlodipine 10       | amlodipine      | Calcium Ions Inhibitor | hypertension |
| coumadin            | coumadin        | Coagulation Inhibitor  | hypertension |
| coumadin 5 mg       | coumadin        | Coagulation Inhibitor  | hypertension |
| metamorfin          | nan             | nan                    | nan          |

Token and Char Fingerprinting Example:

cm = ChunkMapperApproach() \
        .setInputCols(["ner_chunk"]) \
        .setLowerCase(True) \
        .setRels(["action", "treatment"]) \
        .setAllowMultiTokenChunk(True) \
        .setEnableTokenFingerprintMatching(True) \
        .setMinTokenNgramFingerprint(1) \
        .setMaxTokenNgramFingerprint(3) \
        .setMaxTokenNgramDroppingCharsRatio(0.5) \
        .setEnableCharFingerprintMatching(True) \
        .setMinCharNgramFingerprint(1) \
        .setMaxCharNgramFingerprint(3)

Result:

| ner_chunk           | fixed_chunk    | action                  | treatment    |
|:--------------------|:---------------|:------------------------|:-------------|
| Aspaginaspa         | aspagin        | Cycooxygenase Inhibitor | arthritis    |
| Lusa Warfarina 5mg  | Warfarina lusa | Analgesic               | diabetes     |
| amlodipine 10       | amlodipine     | Calcium Ions Inhibitor  | hypertension |
| coumadin            | coumadin       | Coagulation Inhibitor   | hypertension |
| coumadin 5 mg       | coumadin       | Coagulation Inhibitor   | hypertension |
| metamorfin          | nan            | nan                     | nan          |

Token and Char Fingerprinting With Fuzzy Distance Calculation Example:

cm = ChunkMapperApproach() \
        .setInputCols(["ner_chunk"]) \
        .setOutputCol("mappings") \
        .setDictionary("mappings.json") \
        .setLowerCase(True) \
        .setRels(["action"]) \
        .setAllowMultiTokenChunk(True) \
        .setEnableTokenFingerprintMatching(True) \
        .setMinTokenNgramFingerprint(1) \
        .setMaxTokenNgramFingerprint(3) \
        .setMaxTokenNgramDroppingCharsRatio(0.5) \
        .setEnableCharFingerprintMatching(True) \
        .setMinCharNgramFingerprint(1) \
        .setMaxCharNgramFingerprint(3) \
        .setEnableFuzzyMatching(True) \
        .setFuzzyMatchingDistanceThresholds(0.31)

Result:

| ner_chunk          | fixed_chunk    | action                  | treatment    |
|:-------------------|:---------------|:------------------------|:-------------|
| Aspaginaspa        | aspagin        | Cycooxygenase Inhibitor | arthritis    |
| Lusa Warfarina 5mg | Warfarina lusa | Analgesic               | diabetes     |
| amlodipine 10      | amlodipine     | Calcium Ions Inhibitor  | hypertension |
| coumadin           | coumadin       | Coagulation Inhibitor   | hypertension |
| coumadin 5 mg      | coumadin       | Coagulation Inhibitor   | hypertension |
| metamorfin         | metformin      | hypoglycemic            | diabetes     |

You can check Chunk_Mapping notebook for more examples.

New NameChunkObfuscatorApproach Annotator to Obfuscate Doctor and Patient Names Using a Custom External List (consistent name obfuscation)

We have a new NameChunkObfuscatorApproach annotator that can be used in deidentification tasks for replacing doctor and patient names with fake names using a reference document.

Example:

names = """Mitchell#NAME
Jackson#NAME
Leonard#NAME
Bowman#NAME
Fitzpatrick#NAME
Melody#NAME"""

with open('names_test.txt', 'w') as file:
    file.write(names)

nameChunkObfuscator = NameChunkObfuscatorApproach()\
  .setInputCols("ner_chunk")\
  .setOutputCol("replacement")\
  .setRefFileFormat("csv")\
  .setObfuscateRefFile("names_test.txt")\
  .setRefSep("#")\

text = '''John Davies is a 62 y.o. patient admitted. Mr. Davies was seen by attending physician Dr. Lorand and was scheduled for emergency assessment. '''

Result:

Original text   :  John Davies is a 62 y.o. patient admitted. Mr. Davies was seen by attending physician Dr. Lorand and was scheduled for emergency assessment.

Obfuscated text :  Fitzpatrick is a <AGE> y.o. patient admitted. Mr. Bowman was seen by attending physician Dr. Melody and was scheduled for emergency assessment.

You can check Clinical DeIdentification notebook for more examples.

New AssertionChunkConverter Annotator to Prepare Assertion Model Training Dataset From Chunk Indices

In some cases, there may be issues while creating the chunk column by using token indices and losing some data while training and testing the assertion status model if there are issues in these token indices. So we developed a new AssertionChunkConverter annotator that takes begin and end indices of the chunks as input and creates an extended chunk column with metadata that can be used for assertion status detection model training.

Example:

...
converter = AssertionChunkConverter() \
    .setInputCols("tokens")\
    .setChunkTextCol("target")\
    .setChunkBeginCol("char_begin")\
    .setChunkEndCol("char_end")\
    .setOutputTokenBeginCol("token_begin")\
    .setOutputTokenEndCol("token_end")\
    .setOutputCol("chunk")

sample_data = spark.createDataFrame([["An angiography showed bleeding in two vessels off of the Minnie supplying the sigmoid that were succesfully embolized.", "Minnie", 57, 63],
     ["After discussing this with his PCP, Leon was clear that the patient had had recurrent DVTs and ultimately a PE and his PCP felt strongly that he required long-term anticoagulation ", "PCP", 31, 34]])\
     .toDF("text", "target", "char_begin", "char_end")

Result:

+------+----------+--------+-----------+---------+--------------------------+------------------------+------+----------------------------------------------+
|target|char_begin|char_end|token_begin|token_end|tokens[token_begin].result|tokens[token_end].result|target|chunk                                         |
+------+----------+--------+-----------+---------+--------------------------+------------------------+------+----------------------------------------------+
|Minnie|57        |62      |10         |10       |Minnie                    |Minnie                  |Minnie|[{chunk, 57, 63, Minnie, {sentence -> 0}, []}]|
|PCP   |31        |34      |5          |5        |PCP                       |PCP                     |PCP   |[{chunk, 31, 33, PCP, {sentence -> 0}, []}]   |
+------+----------+--------+-----------+---------+--------------------------+------------------------+------+----------------------------------------------+

New training_log_parser Module to Parse Training Log Files of NER And Assertion Status Detection Models

We are releasing a new training_log_parser module that helps to parse NER and Assertion Status Detection model training log files using a single module. Here are the methods and their descriptions:

  Description ner_log_parser assertion_log_parser
How to import You can import this module for NER and Assertion as shown here from sparknlp_jsl.training_log_parser import ner_log_parser from sparknlp_jsl.training_log_parser import assertion_log_parser
get_charts Plots the figures of metrics ( precision, recall, f1) vs epochs ner_log_parser.get_charts(log_file, threshold) assertion_log_parser.get_charts(log_file, labels, threshold)
loss_plot Plots the figures of validation and test loss values vs epochs. ner_log_parser.loss_plot(path) assertion_log_parser.loss_plot(path)
get_best_f1_scores Returns the best Micro and Macro F1 Scores on test set ner_log_parser.get_best_f1_scores(path) assertion_log_parser.get_best_f1_scores(path)
parse_logfile Returns the parsed log file in pandas dataframe format with the order of label-score dataframe, epoch-metrics dataframe and graph file used in tranining. ner_log_parser.parse_logfile(path) assertion_log_parser.parse_logfile(path, labels)
evaluate if verbose, returns overall performance, as well as performance per chunk type; otherwise, simply returns overall precision, recall, f1 scores. Ground truth and predictions should be provided in pandas dataframe. ner_log_parser.evaluate(preds_df['ground_truth'].values, preds_df['prediction'].values) -

Import

from sparknlp_jsl.training_log_parser import ner_log_parser, assertion_log_parser

ner_parser = ner_log_parser()
assertion_parser = assertion_log_parser()

Example for NER loss_plot method:

ner_parser.loss_plot('NER_training_log_file.log')

Result:

image

Example for NER evaluate method:

metrics = ner_parser.evaluate(preds_df['ground_truth'].values, preds_df['prediction'].values)

Result:

image

image

Example for Assertion get_best_f1_scores method:

assertion_parser.get_best_f1_scores('Assertion_training_log_file.log', ['Absent', 'Present'])

Result:

image

Obfuscation of Age Entities by Age Groups in Deidentification

We have a new setAgeRanges() parameter in Deidentification annotator that provides the ability to set a custom range for obfuscation of AGE entities by another age within that age group (range). Default age groups list is [1, 4, 12, 20, 40, 60] and users can set any range.

  • Infant = 0-1 year.
  • Toddler = 2-4 yrs.
  • Child = 5-12 yrs.
  • Teen = 13-19 yrs.
  • Adult = 20-39 yrs.
  • Middle Age Adult = 40-59 yrs.
  • Senior Adult = 60+

Example:

deidentification = DeIdentification()\
    .setInputCols(["sentence", "token", "age_chunk"]) \
    .setOutputCol("obfuscation") \
    .setMode("obfuscate")\
    .setObfuscateDate(True)\
    .setObfuscateRefSource("faker") \
    .setAgeRanges([1, 4, 12, 20, 40, 60, 80])

Result:

+--------------------------------+---------+--------------------------------+
|text                            |age_chunk|obfuscation                     |
+--------------------------------+---------+--------------------------------+
|1 year old baby                 |1        |2 year old baby                 |
|4 year old kids                 |4        |6 year old kids                 |
|A 15 year old female with       |15       |A 12 year old female with       |
|Record date: 2093-01-13, Age: 25|25       |Record date: 2093-03-01, Age: 30|
|Patient is 45 years-old         |45       |Patient is 44 years-old         |
|He is 65 years-old male         |65       |He is 75 years-old male         |
+--------------------------------+---------+--------------------------------+

Controlling the behaviour of unnormalized dates while shifting the days in Deidentification (setUnnormalizedDateMode parameter)

Two alternatives can be used when deidentification in unnormalized date formats, these are mask and obfuscation.

  • setUnnormalizedDateMode('mask') parameter is used to mask the DATE entities that can not be normalized.
  • setUnnormalizedDateMode('obfuscate') parameter is used to obfuscate the DATE entities that can not be normalized.

Example:

de_identification = DeIdentification() \
    .setInputCols(["ner_chunk", "token", "document2"]) \
    .setOutputCol("deid_text") \
    .setMode("obfuscate") \
    ...
    .setUnnormalizedDateMode("mask") # or obfuscation

Result:

+-----------+---------+------------+------------+
|text       |dateshift| mask       | obfuscation|
+-----------+---------+------------+------------+
|04/19/2018 |-5       | 04/14/2018 | 04/14/2018 |
|04-19-2018 |-2       | 04-17-2018 | 04-17-2018 |
|19 Apr 2018|10       | <DATE>     | 10-10-1975 |
|04-19-18   |20       | <DATE>     | 03-23-2001 |
+-----------+---------+------------+------------+

Setting Default Day, Months or Years for Partial Dates via DateNormalizer

We have 3 new parameters to make DateNormalizer more flexible with date replacing. If any of the day, month and year information is missing in the date format, the following default values will be added.

  • setDefaultReplacementDay: default value is 15
  • setDefaultReplacementMonth: default value is July or 6
  • setDefaultReplacementYear: default value is 2020

Example:

date_normalizer_us = DateNormalizer()\
    .setInputCols('date_chunk')\
    .setOutputCol('normalized_date_us')\
    .setOutputDateformat('us')\
    .setDefaultReplacementDay("15")\
    .setDefaultReplacementMonth("6")\
    .setDefaultReplacementYear("2020")

Result:

+------------+------------+------------------+
|text        |date_chunk  |normalized_date_us|
+------------+------------+------------------+
|08/02/2018  |08/02/2018  |08/02/2018        |
|3 April 2020|3 April 2020|04/03/2020        |
|03/2021     |03/2021     |03/15/2021        |
|05 Jan      |05 Jan      |01/05/2020        |
|01/05       |01/05       |01/05/2020        |
|2022        |2022        |06/15/2022        |
+------------+------------+------------------+

You can check Date Normalizer notebook for more examples

Setting Label Case Sensitivity in AssertionFilterer

We have case sensitive filtering flexibility for labels by setting new setCaseSensitive(True) in AssertionFilterer annotator.

Example:

assertion_filterer = AssertionFilterer()\
    .setInputCols("sentence","ner_chunk","assertion")\
    .setOutputCol("assertion_filtered")\
    .setCaseSensitive(False)\
    .setWhiteList(["ABsent"])

sample_text = "The patient was admitted 2 weeks ago with a headache. No alopecia was noted."

Result:

| chunks   | entities                  | assertion | confidence |
| -------- | ------------------------- | --------- | ---------- |
| Alopecia | Disease_Syndrome_Disorder | Absent    |          1 |

getClasses Method to Zero Shot NER and Zero Shot Relation Extraction Models

The predicted entities of ZeroShotNerModel and ZeroShotRelationExtractionModels can be extracted with getClasses methods just like NER annotators.

Example:

zero_shot_ner = ZeroShotNerModel.pretrained("zero_shot_ner_roberta", "en", "clinical/models")\
    .setEntityDefinitions({
            "PROBLEM": ["What is the disease?", "What is the problem?" ,"What does a patient suffer"],
            "DRUG": ["Which drug?", "Which is the drug?", "What is the drug?"],
            "ADMISSION_DATE": ["When did patient admitted to a clinic?"],
            "PATIENT_AGE": ["How old is the patient?",'What is the gae of the patient?']  })\
    .setInputCols(["sentence", "token"])\
    .setOutputCol("zero_shot_ner")

zero_shot_ner.getClasses()

Result:

['DRUG', 'PATIENT_AGE', 'ADMISSION_DATE', 'PROBLEM']

Setting Max Syntactic Distance Flexibility In RelationExtractionApproach

Now we are able to set maximal syntactic distance as threshold in RelationExtractionApproach while training relation extraction models.

reApproach = RelationExtractionApproach()\
    .setInputCols(["embeddings", "pos_tags", "train_ner_chunks", "dependencies"])\
    .setOutputCol("relations")\
    .setLabelColumn("rel")\
    ...
    .setMaxSyntacticDistance(10)

Generic Relation Extraction Model (generic_re) to extract relations between any named entities using syntactic distances

We already have more than 80 relation extraction (RE) models that can extract relations between certain named entities. Nevertheless, there are some rare entities or cases that you may not find the right RE or the one you find may not work as expected due to nature of your dataset. In order to ease this burden, we are releasing a generic RE model (generic_re) that can be used between any named entities using the syntactic distances, POS tags and dependency tree between the entities. You can tune this model by using the setMaxSyntacticDistance param.

Example:

reModel = RelationExtractionModel()\
    .pretrained("generic_re")\
    .setInputCols(["embeddings", "pos_tags", "ner_chunks", "dependencies"])\
    .setOutputCol("relations")\
    .setRelationPairs(["Biomarker-Biomarker_Result", "Biomarker_Result-Biomarker", "Oncogene-Biomarker_Result", "Biomarker_Result-Oncogene", "Pathology_Test-Pathology_Result", "Pathology_Result-Pathology_Test"]) \
    .setMaxSyntacticDistance(4)
    
text = """Pathology showed tumor cells, which were positive for estrogen and progesterone receptors."""    

Result:

|sentence |entity1_begin |entity1_end | chunk1    | entity1          |entity2_begin |entity2_end | chunk2                 | entity2          | relation                        |confidence|
|--------:|-------------:|-----------:|:----------|:-----------------|-------------:|-----------:|:-----------------------|:-----------------|:--------------------------------|----------|
|       0 |            1 |          9 | Pathology | Pathology_Test   |           18 |         28 | tumor cells            | Pathology_Result | Pathology_Test-Pathology_Result |         1|
|       0 |           42 |         49 | positive  | Biomarker_Result |           55 |         62 | estrogen               | Biomarker        | Biomarker_Result-Biomarker      |         1|
|       0 |           42 |         49 | positive  | Biomarker_Result |           68 |         89 | progesterone receptors | Biomarker        | Biomarker_Result-Biomarker      |         1|

Core improvements and bug fixes

  • Fixed obfuscated addresses capitalized word style
  • Added more patterns for Date Obfuscation
  • Improve speed of get_conll_data() method in alab module
  • Fixed serialization Issue with MLFlow ContextualParser
  • Renamed TFGraphBuilder.setIsMedical to TFGraphBuilder.setIsLicensed

New and Updated Notebooks

5 New Clinical Models and Pipelines Added & Updated in Total

  • drug_category_mapper
  • ner_sdoh_mentions
  • bert_sequence_classifier_sdoh_community_absent_status
  • bert_sequence_classifier_sdoh_community_present_status
  • bert_sequence_classifier_sdoh_environment_status

For all Spark NLP for healthcare models, please check: Models Hub Page

Versions

Last updated