sparknlp_jsl.annotator.router
#
Module Contents#
Classes#
Convert chunks from regexMatcher to chunks with a entity in the metadata. |
- class Router(classname='com.johnsnowlabs.annotator.Router', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Convert chunks from regexMatcher to chunks with a entity in the metadata. Use the identifier or field as a entity.
Input Annotation types
Output Annotation type
ANY
ANY
- Parameters:
inputType – The type of the entity that you want to filter by default sentence_embeddings.Possible values
document|token|wordpiece|word_embeddings|sentence_embeddings|category|date|sentiment|pos|chunk|named_entity|regex|dependency|labeled_dependency|language|keyword
filterFieldsElements – The filterfieldsElements are the allowed values for the metadata field that is being used
metadataField – The key in the metadata dictionary that you want to filter (by default
entity
)
Examples
>>> test_data = spark.createDataFrame(sentences).toDF("text") >>> document = DocumentAssembler().setInputCol("text").setOutputCol("document") >>> sentence = SentenceDetector().setInputCols("document").setOutputCol("sentence") >>> regexMatcher = RegexMatcher().setExternalRules("../src/test/resources/regex-matcher/rules2.txt", ",") \ ... .setInputCols("sentence") \ ... .setOutputCol("regex") \ ... .setStrategy("MATCH_ALL") >>> chunk2Doc = Chunk2Doc().setInputCols("regex").setOutputCol("doc_chunk") >>> embeddings = BertSentenceEmbeddings.pretrained("sent_small_bert_L2_128") \ ... .setInputCols("doc_chunk") \ ... .setOutputCol("bert") \ ... .setCaseSensitive(False) \ ... .setMaxSentenceLength(32) >>> router_name_embeddings = Router() \ ... .setInputType("sentence_embeddings") \ ... .setInputCols("bert") \ ... .setMetadataField("identifier") \ ... .setFilterFieldsElements(["name"]) \ ... .setOutputCol("names_embeddings") >>> router_city_embeddings = Router() \ ... .setInputType("sentence_embeddings") \ ... .setInputCols(["bert"]) \ ... .setMetadataField("identifier") \ ... .setFilterFieldsElements(["city"]) \ ... .setOutputCol("cities_embeddings") >>> router_names = Router() \ ... .setInputType("chunk") \ ... .setInputCols("regex") \ ... .setMetadataField("identifier") \ ... .setFilterFieldsElements(["name"]) \ ... .setOutputCol("names_chunks") >>> pipeline = Pipeline().setStages( >>> [document, sentence, regexMatcher, chunk2Doc, router_names, embeddings, router_name_embeddings, ... router_city_embeddings])
- filterFieldsElements#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- inputType#
- lazyAnnotator#
- metadataField#
- name = 'Router'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType#
- outputCol#
- skipLPInputColsValidation = True#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setFilterFieldsElements(value)#
Sets the filterfieldsElements are the allowed values for the metadata field that is being used
- Parameters:
value (list) – The filterfieldsElements are the allowed values for the metadata field that is being used
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations. :param *value: Input columns for the annotator :type *value: str
- setInputType(value)#
Sets the type of the entity that you want to filter by default sentence_embedding
- Parameters:
value (int) – The type of the entity that you want to filter by default sentence_embedding
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMetadataField(value)#
Sets the key in the metadata dictionary that you want to filter (by default ‘entity’)
- Parameters:
value (str) – The key in the metadata dictionary that you want to filter (by default ‘entity’)
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.