sparknlp_jsl.annotator.flattener
#
Module Contents#
Classes#
Converts annotation results into a format that easier to use. |
- class Flattener#
Bases:
sparknlp_jsl.annotator.AnnotatorTransformer
Converts annotation results into a format that easier to use.
The Flattener produces a DataFrame with flattened and exploded columns containing annotation results, making it easier to interpret and analyze the information. It is particularly useful for extracting and organizing the results obtained from Spark NLP Pipelines.
Input Annotation types
Output Annotation type
ANY
NONE
- Parameters:
inputCols – Input annotations
cleanAnnotations – Whether to remove annotation columns, by default True
explodeSelectedFields – Dict of input columns to their corresponding selected fields
flattenExplodedColumns – Whether to flatten exploded columns(default : true)
orderByColumn – Specify the column by which the DataFrame should be ordered.
orderDescending – specifying whether to order the DataFrame in descending order.(default : true)
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from sparknlp.pretrained import PretrainedPipeline >>> data = spark.createDataFrame([["He is an elderly gentleman in no acute distress."]]).toDF("text")
>>> documentAssembler = DocumentAssembler().setInputCol("text").setOutputCol("document") >>> sentenceDetector = SentenceDetector().setInputCols(["document"]).setOutputCol("sentence") >>> tokenizer = Tokenizer().setInputCols(["sentence"]).setOutputCol("token") >>> word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models") >>> .setInputCols(["sentence", "token"]).setOutputCol("embeddings") >>> clinical_ner = MedicalNerModel.pretrained("ner_jsl", "en", "clinical/models") >>> .setInputCols(["sentence", "token", "embeddings"]).setOutputCol("ner") >>> ner_converter = NerConverterInternal().setInputCols(["sentence", "token", "ner"]).setOutputCol("ner_chunk") >>> clinical_assertion = AssertionDLModel.pretrained("assertion_jsl_augmented", "en", "clinical/models") >>> .setInputCols(["sentence", "ner_chunk", "embeddings"]).setOutputCol("assertion") >>> .setEntityAssertionCaseSensitive(False)
>>> nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector,tokenizer, word_embeddings,clinical_ner, ner_converter,clinical_assertion, finisher) ]) >>> flattener = Flattener() >>> .setInputCols("sentence", "ner_chunk", "assertion") >>> .setExplodeSelectedFields({"ner_chunk": ["result", "metadata.entity"], >>> "assertion": ["result", "metadata.confidence"]}) >>> .setOrderByColumn("assertion_metadata_confidence") >>> explainResult = pipeline.transform(data)
>>> model = nlpPipeline.fit(data).transform(data) >>> model.select("finished_ner_chunk_exploded").show(truncate=False)
- Show results.
ner_chunk_result
ner_chunk_metadata_entity
assertion_result
assertion_metadata_confidence
elderly gentleman He acute distress
Age Gender Gender Modifier Symptom
Present Absent SomeoneElse Absent Absent
0.9885 0.9976 0.9994 1.0 1.0
- cleanAnnotations#
- flattenExplodedColumns#
- getter_attrs = []#
- inputCols#
- keepOriginalColumns#
- name = 'Flattener'#
- orderByColumn#
- orderDescending#
- outputAnnotatorType = None#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets input columns name of annotations.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setCleanAnnotations(value)#
Sets whether to remove annotation columns, by default True.
- Parameters:
value (bool) – Whether to remove annotation columns
- setExplodeSelectedFields(value)#
Sets a dict of input columns to their corresponding selected fields.
When set, the transformation returns an exploded column for each specified field containing annotation data. This allows you to choose and explode only the desired fields.
If explodeSelectedFields is not set (default), the transformation will return all information for the specified columns.
Alias can be given with as
- Parameters:
value (dict) – Map of input columns to their corresponding selected fields
- setFlattenExplodedColumns(value)#
Sets whether to flatten exploded columns. When `true`(the default), the transformation returns a flattened and exploded columns containing annotation data, providing a comprehensive view of the annotated information.
When set to false , the transformation returns exploded columns without flattening
- Parameters:
value (bool) – whether to flatten exploded columns
- setInputCols(*value)#
- Sets column names of input annotations.
If explodeSelectedFields is not set (default), the transformation will return all information for the specified columns.
- Parameters:
*value (str) – Input columns for the annotator
- setKeepOriginalColumns(value)#
- Sets array of column names that should be kept in the DataFrame
after the flattening process. These columns will not be affected by the flattening operation and will be included in the final output as they are.
- Parameters:
value (list[str]) – Array of column names that should be kept in the DataFrame after the flattening process.
- setOrderByColumn(value)#
- Sets the column by which the DataFrame should be ordered.
flattenExplodedColumns must be true for ordering
- Parameters:
value (bool) – the column by which the DataFrame should be ordered.
- setOrderDescending(value)#
- Sets whether to order the DataFrame in descending order.(defaulttrue)
flattenExplodedColumns must be true for ordering
- Parameters:
value (bool) – whether to order the DataFrame in descending order.(default : true)
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.