sparknlp_jsl.annotator.chunk2_token
#
Module Contents#
Classes#
Converts |
- class Chunk2Token(classname='com.johnsnowlabs.nlp.annotators.Chunk2Token', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Converts
CHUNK
type annotations intoTOKEN
typeInput Annotation types
Output Annotation type
CHUNK
TOKEN
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler().setInputCol("text").setOutputCol("document") >>> chunkAssembler = sentenceDetector = SentenceDetector().setInputCols("document").setOutputCol("sentence") >>> tokenizer = Tokenizer().setInputCols("sentence").setOutputCol("token") >>> nGramGenerator = NGramGenerator().setInputCols("token").setOutputCol("ngrams") \ ... .setDelimiter("_").setN(2).setEnableCumulative(False) >>> chunk2Token = Chunk2Token().setInputCols("ngrams").setOutputCol("ngram_tokens") >>> data = spark.createDataFrame([["A 63-year-old man presents to the hospital."]]).toDF("text") >>> pipeline = Pipeline() \ ... .setStages([documentAssembler, chunkAssembler, tokenizer, nGramGenerator, chunk2Token]).fit(data) >>> result = pipeline.transform(data) >>> result.selectExpr("ngram_tokens").show(truncate=False) +----------------------------------------------------------------+ |result | +----------------------------------------------------------------+ |{token, 0, 12, A_63-year-old, {sentence -> 0, chunk -> 0}, []} | |{token, 2, 16, 63-year-old_man, {sentence -> 0, chunk -> 1}, []}| |{token, 14, 25, man_presents, {sentence -> 0, chunk -> 2}, []} | |{token, 18, 28, presents_to, {sentence -> 0, chunk -> 3}, []} | |{token, 27, 32, to_the, {sentence -> 0, chunk -> 4}, []} | |{token, 30, 41, the_hospital, {sentence -> 0, chunk -> 5}, []} | |{token, 34, 42, hospital_., {sentence -> 0, chunk -> 6}, []} | +----------------------------------------------------------------+
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- name = 'Chunk2Token'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'token'#
- outputCol#
- skipLPInputColsValidation = True#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.