sparknlp_jsl.annotator.chunker.mapper2_chunk
#
Module Contents#
Classes#
This annotator converts 'LABELED_DEPENDENCY' type annotations coming from [[ChunkMapper]] into 'CHUNK' type to create new chunk-type column, |
- class Mapper2Chunk#
Bases:
sparknlp_jsl.annotator.AnnotatorTransformer
,sparknlp_jsl.annotator.AnnotatorProperties
- This annotator converts ‘LABELED_DEPENDENCY’ type annotations coming from [[ChunkMapper]] into ‘CHUNK’ type to create new chunk-type column,
compatible with annotators that use chunk type as input.
Input Annotation types
Output Annotation type
LABELED_DEPENDENCY
CHUNK
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp_jsl.common import * >>> from sparknlp.annotator import * >>> from sparknlp.training import * >>> from pyspark.ml import Pipeline
>>> # Sample data >>> text = "Patient resting in bed. Patient given azithromycin without any difficulty. Patient denies nausea at this time. zofran declined. Patient is also having intermittent sweating" >>> data = spark.createDataFrame([[text]]).toDF("text")
>>> # Define the Spark NLP pipeline stages >>> documentAssembler = DocumentAssembler() >>> .setInputCol("text") >>> .setOutputCol("document")
>>> sentenceDetector = SentenceDetector() >>> .setInputCols(["document"]) >>> .setOutputCol("sentence")
>>> tokenizer = Tokenizer() >>> .setInputCols(["sentence"]) >>> .setOutputCol("token")
>>> word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models") >>> .setInputCols(["sentence", "token"]) >>> .setOutputCol("embeddings")
>>> clinical_ner = MedicalNerModel.pretrained("ner_jsl", "en", "clinical/models") >>> .setInputCols(["sentence", "token", "embeddings"]) >>> .setOutputCol("ner")
>>> ner_converter = NerConverterInternal() >>> .setInputCols(["sentence", "token", "ner"]) >>> .setOutputCol("ner_chunk")
>>> chunkMapper = ChunkMapperModel.pretrained("drug_action_treatment_mapper", "en", "clinical/models") >>> .setInputCols(["ner_chunk"]) >>> .setOutputCol("relations") >>> .setRels(["action"])
>>> mapper2chunk = Mapper2Chunk() >>> .setInputCols(["relations"]) >>> .setOutputCol("chunk") >>> .setFilterNoneValues(True)
>>> # Build the pipeline >>> pipeline = Pipeline(stages=[ >>> documentAssembler, >>> sentenceDetector, >>> tokenizer, >>> word_embeddings, >>> clinical_ner, >>> ner_converter, >>> chunkMapper, >>> mapper2chunk >>> ]).fit(data)
>>> # Transform the data using the pipeline >>> result = pipeline.transform(data)
>>> result.selectExpr("chunk.result", "chunk.annotatorType").show(truncate=False)
result
annotatorType
[bactericidal, antiemetic]
[chunk, chunk]
- filterNoneValues#
- getter_attrs = []#
- inputAnnotatorTypes#
- kwargs#
- name = 'Mapper2Chunk'#
- outputAnnotatorType#
- uid#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setFilterNoneValues(value)#
Whether to filter ‘NONE’ values. Default is false.
- Parameters:
value (bool) – Whether to filter ‘NONE’ values.
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.