sparknlp_jsl.annotator.disambiguation.ner_disambiguator
#
Module Contents#
Classes#
Links words of interest, such as names of persons, locations and companies, from an input text document to |
|
Links words of interest, such as names of persons, locations and companies, from an input text document to |
- class NerDisambiguator#
Bases:
sparknlp_jsl.common.AnnotatorApproachInternal
Links words of interest, such as names of persons, locations and companies, from an input text document to a corresponding unique entity in a target Knowledge Base (KB). Words of interest are called Named Entities (NEs), mentions, or surface forms. Instantiated / pretrained model of the NerDisambiguator. Links words of interest, such as names of persons, locations and companies, from an input text document to a corresponding unique entity in a target Knowledge Base (KB). Words of interest are called Named Entities (NEs),
Input Annotation types
Output Annotation type
CHUNK, SENTENCE_EMBEDDINGS
DISAMBIGUATION
- Parameters:
embeddingTypeParam – Could be ‘bow’ for word embeddings or ‘sentence’ for sentences
numFirstChars – How many characters should be considered for initial prefix search in knowledge base
tokenSearch – Should we search by token or by chunk in knowledge base (token is recommended)
narrowWithApproximateMatching – Should we narrow prefix search results with levenstein distance based matching (true is recommended)
levenshteinDistanceThresholdParam – Levenshtein distance threshold to narrow results from prefix search (0.1 is default)
nearMatchingGapParam – Puts a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing,len(candidate) - len(entity chunk) > nearMatchingGap (Default: 4).
predictionsLimit – Limit on amount of predictions N for topN predictions
s3KnowledgeBaseName – knowledge base name in s3
Examples
>>> data = spark.createDataFrame([["The show also had a contestant named Donald Trump who later defeated Christina Aguilera ..."]]) ... .toDF("text") >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> sentenceDetector = SentenceDetector() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence") >>> tokenizer = Tokenizer() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("token") >>> word_embeddings = WordEmbeddingsModel.pretrained() \ ... .setInputCols(["sentence", "token"]) \ ... .setOutputCol("embeddings") >>> sentence_embeddings = SentenceEmbeddings() \ ... .setInputCols(["sentence","embeddings"]) \ ... .setOutputCol("sentence_embeddings") >>> ner_model = NerDLModel.pretrained() \ ... .setInputCols(["sentence", "token", "embeddings"]) \ ... .setOutputCol("ner") >>> ner_converter = NerConverter() \ ... .setInputCols(["sentence", "token", "ner"]) \ ... .setOutputCol("ner_chunk") \ ... .setWhiteList(["PER"])
Then the extracted entities can be disambiguated. >>> disambiguator = NerDisambiguator() … .setS3KnowledgeBaseName(“i-per”) … .setInputCols([“ner_chunk”, “sentence_embeddings”]) … .setOutputCol(“disambiguation”) … .setNumFirstChars(5) … >>> nlpPipeline = Pipeline(stages=[ … documentAssembler, … sentenceDetector, … tokenizer, … word_embeddings, … sentence_embeddings, … ner_model, … ner_converter, … disambiguator]) … >>> model = nlpPipeline.fit(data) >>> result = model.transform(data) >>> result.selectExpr(“explode(disambiguation)”) … .selectExpr(“col.metadata.chunk as chunk”, “col.result as result”).show(5, False)
chunk
result
Donald Trump Christina Aguilera
http:#en.wikipedia.org/?curid=4848272, http:#en.wikipedia.org/?curid=31698421, http:#en.wikipedia.org/?curid=55907961 http:#en.wikipedia.org/?curid=144171, http:#en.wikipedia.org/?curid=6636454
- embeddingTypeParam#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- levenshteinDistanceThresholdParam#
- narrowWithApproximateMatching#
- nearMatchingGapParam#
- numFirstChars#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'disambiguation'#
- outputCol#
- predictionsLimit#
- s3KnowledgeBaseName#
- skipLPInputColsValidation = True#
- tokenSearch#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- fit(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = ...) M #
- fit(dataset: pyspark.sql.dataframe.DataFrame, params: List[pyspark.ml._typing.ParamMap] | Tuple[pyspark.ml._typing.ParamMap]) List[M]
Fits a model to the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input dataset.params (dict or list or tuple, optional) – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
- Returns:
fitted model(s)
- Return type:
Transformer
or a list ofTransformer
- fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[pyspark.ml._typing.ParamMap]) Iterator[Tuple[int, M]] #
Fits a model to the input dataset for each param map in paramMaps.
New in version 2.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input dataset.paramMaps (
collections.abc.Sequence
) – A Sequence of param maps.
- Returns:
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
- Return type:
_FitMultipleIterator
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setEmbeddingType(value)#
Sets if we want to use ‘bow’ for word embeddings or ‘sentence’ for sentences”
- Parameters:
value (str) – Can be ‘bow’ for word embeddings or ‘sentence’ for sentences (Default: sentence) Can be ‘bow’ for word embeddings or ‘sentence’ for sentences (Default: sentence)
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setLevenshteinDistanceThresholdParam(value)#
Sets Levenshtein distance threshold to narrow results from prefix search (0.1 is default)
- Parameters:
value (float) – Levenshtein distance threshold to narrow results from prefix search (0.1 is default)
- setNarrowWithApproximateMatching(value)#
Sets whether to narrow prefix search results with levenstein distance based matching (Default: true)
- Parameters:
value (bool) – Whether to narrow prefix search results with levenstein distance based matching (Default: true)
- setNearMatchingGapParam(value)#
Sets a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing.
- Parameters:
value (int) – Limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing
- setNumFirstChars(value)#
How many characters should be considered for initial prefix search in knowledge base
- Parameters:
value (bool) – How many characters should be considered for initial prefix search in knowledge base
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setPredictionLimit(value)#
Sets limit on amount of predictions N for topN predictions
- Parameters:
value (bool) – Limit on amount of predictions N for topN predictions
- setS3KnowledgeBaseName(value)#
Sets knowledge base name in s3
- Parameters:
value (str) – knowledge base name in s3 example (i-per)
- setTokenSearch(value)#
Sets whether to search by token or by chunk in knowledge base (Default: true)
- Parameters:
value (bool) – Whether to search by token or by chunk in knowledge base (Default: true)
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.
- class NerDisambiguatorModel(classname='com.johnsnowlabs.nlp.annotators.disambiguation.NerDisambiguatorModel', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Links words of interest, such as names of persons, locations and companies, from an input text document to a corresponding unique entity in a target Knowledge Base (KB). Words of interest are called Named Entities (NEs), mentions, or surface forms. Instantiated / pretrained model of the NerDisambiguator. Links words of interest, such as names of persons, locations and companies, from an input text document to a corresponding unique entity in a target Knowledge Base (KB). Words of interest are called Named Entities (NEs),
Input Annotation types
Output Annotation type
CHUNK, SENTENCE_EMBEDDINGS
DISAMBIGUATION
- Parameters:
embeddingTypeParam – Could be
bow
for word embeddings orsentence
for sentencesnumFirstChars – How many characters should be considered for initial prefix search in knowledge base
tokenSearch – Should we search by token or by chunk in knowledge base (token is recommended)
narrowWithApproximateMatching – Should we narrow prefix search results with levenstein distance based matching (true is recommended)
levenshteinDistanceThresholdParam – Levenshtein distance threshold to narrow results from prefix search (0.1 is default)
nearMatchingGapParam – Puts a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing,len(candidate) - len(entity chunk) > nearMatchingGap (Default: 4).
predictionsLimit – Limit on amount of predictions N for topN predictions
s3KnowledgeBaseName – knowledge base name in s3
Examples
>>> data = spark.createDataFrame([["The show also had a contestant named Donald Trump who later defeated Christina Aguilera ..."]]) ... .toDF("text") >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> sentenceDetector = SentenceDetector() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence") >>> tokenizer = Tokenizer() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("token") >>> word_embeddings = WordEmbeddingsModel.pretrained() \ ... .setInputCols(["sentence", "token"]) \ ... .setOutputCol("embeddings") >>> sentence_embeddings = SentenceEmbeddings() \ ... .setInputCols(["sentence","embeddings"]) \ ... .setOutputCol("sentence_embeddings") >>> ner_model = NerDLModel.pretrained() \ ... .setInputCols(["sentence", "token", "embeddings"]) \ ... .setOutputCol("ner") >>> ner_converter = NerConverter() \ ... .setInputCols(["sentence", "token", "ner"]) \ ... .setOutputCol("ner_chunk") \ ... .setWhiteList(["PER"])
Then the extracted entities can be disambiguated. >>> disambiguator = NerDisambiguatorModel.pretrained() … .setInputCols([“ner_chunk”, “sentence_embeddings”]) … .setOutputCol(“disambiguation”) … .setNumFirstChars(5) … >>> nlpPipeline = Pipeline(stages=[ … documentAssembler, … sentenceDetector, … tokenizer, … word_embeddings, … sentence_embeddings, … ner_model, … ner_converter, … disambiguator]) … >>> model = nlpPipeline.fit(data) >>> result = model.transform(data) >>> result.selectExpr(“explode(disambiguation)”) … .selectExpr(“col.metadata.chunk as chunk”, “col.result as result”).show(5, False)
chunk
result
Donald Trump Christina Aguilera
http:#en.wikipedia.org/?curid=4848272, http:#en.wikipedia.org/?curid=31698421, http:#en.wikipedia.org/?curid=55907961 http:#en.wikipedia.org/?curid=144171, http:#en.wikipedia.org/?curid=6636454
- embeddingTypeParam#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- levenshteinDistanceThresholdParam#
- name = 'NerDisambiguatorModel'#
- narrowWithApproximateMatching#
- nearMatchingGapParam#
- numFirstChars#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'disambiguation'#
- outputCol#
- predictionsLimit#
- skipLPInputColsValidation = True#
- tokenSearch#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- static pretrained(name='disambiguator_per', lang='en', remote_loc='clinical/models')#
Downloads and loads a pretrained model.
- Parameters:
name (str, optional) – Name of the pretrained model, by default “disambiguator_per”
lang (str, optional) – Language of the pretrained model, by default “en”
remote_loc (str, optional) – Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
The restored model
- Return type:
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setEmbeddingType(value)#
Sets if we want to use ‘bow’ for word embeddings or ‘sentence’ for sentences
- Parameters:
value (str) – Can be ‘bow’ for word embeddings or ‘sentence’ for sentences (Default: sentence)
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setLevenshteinDistanceThresholdParam(value)#
Sets Levenshtein distance threshold to narrow results from prefix search (0.1 is default)
- Parameters:
value (float) – Levenshtein distance threshold to narrow results from prefix search (0.1 is default)
- setNarrowWithApproximateMatching(value)#
Sets whether to narrow prefix search results with levenstein distance based matching (Default: true)
- Parameters:
value (bool) – Whether to narrow prefix search results with levenstein distance based matching (Default: true)
- setNearMatchingGapParam(value)#
Sets a limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing.
- Parameters:
value (int) – Limit on a string length (by trimming the candidate chunks) during levenshtein-distance based narrowing
- setNumFirstChars(value)#
How many characters should be considered for initial prefix search in knowledge base
- Parameters:
value (bool) – How many characters should be considered for initial prefix search in knowledge base
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setPredictionLimit(value)#
Sets limit on amount of predictions N for topN predictions
- Parameters:
s (bool) – Limit on amount of predictions N for topN predictions
- setTokenSearch(value)#
Sets whether to search by token or by chunk in knowledge base (Default: true)
- Parameters:
value (bool) – Whether to search by token or by chunk in knowledge base (Default: true)
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.