sparknlp_jsl.annotator.assertion.assertion_merger
#
Contains Class for AssertionMerger
Module Contents#
Classes#
Merges variety assertion columns coming from Assertion annotators like |
- class AssertionMerger(classname='com.johnsnowlabs.nlp.annotators.assertion.merger.AssertionMerger', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
,sparknlp_jsl.annotator.white_black_list_params.WhiteBlackListParams
Merges variety assertion columns coming from Assertion annotators like
sparknlp_jsl.annotator.assertion.AssertionDLModel
. AssertionMerger can filter, prioritize and merge assertion annotations by using proper parameters. See Also:sparknlp_jsl.annotator.WhiteBlackListParams
for filtering options.Input Annotation types
Output Annotation type
ASSERTION
sASSERTION
- Parameters:
mergeOverlapping (bool) – Whether to merge overlapping matched assertion annotations. Default: True
applyFilterBeforeMerge (bool) – Whether to apply filtering before merging process. If True, filtering will be applied before merging; if False, filtering will be applied after merging process. Default: False.
blackList (list[str]) – If defined, list of entities to ignore. The rest will be processed.
whiteList (list[str]) – If defined, list of entities to process. The rest will be ignored. Do not include IOB prefix on labels.
caseSensitive (bool) – Determines whether the definitions of the white listed and black listed entities are case sensitive. Default: True.
assertionsConfidence (dict[str, float]) – Pairs (assertion,confidenceThreshold) to filter assertions which have confidence lower than the confidence threshold.
orderingFeatures (list[str]) – Specifies the ordering features to use for overlapping entities. Possible values include: ‘begin’, ‘end’, ‘length’, ‘source’, ‘confidence’. Default: [‘begin’, ‘length’, ‘source’]
selectionStrategy (str) – Determines the strategy for selecting annotations. Annotations can be selected either sequentially based on their order (Sequential) or using a more diverse strategy (DiverseLonger). Currently, only Sequential and DiverseLonger options are available. Default: Sequential.
defaultConfidence (float) – When the confidence value is included in the orderingFeatures and a given annotation does not have any confidence, this parameter determines the value to be used. The default value is 0.
assertionSourcePrecedence (str) – Specifies the assertion sources to use for prioritizing overlapping annotations when the ‘source’ ordering feature is utilized. This parameter contains a comma-separated list of assertion sources that drive the prioritization. Annotations will be prioritized based on the order of the given string.
sortByBegin (bool) – Whether to sort the annotations by begin at the end of the merge and filter process. Default: False.
- applyFilterBeforeMerge#
- assertionSourcePrecedence#
- blackList#
- caseSensitive#
- defaultConfidence#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- mergeOverlapping#
- name = 'AssertionMerger'#
- optionalInputAnnotatorTypes = []#
- orderingFeatures#
- outputAnnotatorType#
- outputCol#
- selectionStrategy#
- skipLPInputColsValidation = True#
- sortByBegin#
- uid#
- whiteList#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setApplyFilterBeforeMerge(value)#
Sets whether to apply filtering before merging process. If True, filtering will be applied before merging; if False, filtering will be applied after merging process. Default: False.
- Parameters:
value (bool) – Whether to apply filtering before merging process.
- setAssertionSourcePrecedence(value)#
Sets Specifies the assertion sources to use for prioritizing overlapping annotations when the ‘source’ ordering feature is utilized. This parameter contains a comma-separated list of assertion sources that drive the prioritization. Annotations will be prioritized based on the order of the given string.
- Parameters:
value (str) – Specifies the assertion sources to use for prioritizing overlapping annotations when the ‘source’ ordering feature is utilized.
- setAssertionsConfidence(value: dict)#
Sets Pairs (assertion,confidenceThreshold) to filter assertions which have confidence lower than the confidence threshold.
- Parameters:
value (dict[str, float]) – Pairs (assertion,confidenceThreshold) to filter assertions which have confidence lower than the confidence threshold.
- setBlackList(value)#
Sets If defined, list of entities to ignore. The rest will be processed. Do not include IOB prefix on labels
- Parameters:
value (List[str]) – If defined, list of entities to ignore. The rest will be processed. Do not include IOB prefix on labels
- setCaseSensitive(value)#
Determines whether the definitions of the white listed and black listed entities are case sensitive or not.
- Parameters:
value (bool) – Whether white listed and black listed entities are case sensitive or not. Default: True.
- setDefaultConfidence(value)#
Sets When the confidence value is included in the orderingFeatures and a given annotation does not have any confidence, this parameter determines the value to be used.
- Parameters:
value (float) – When the confidence value is included in the orderingFeatures and a given annotation does not have any confidence, this parameter determines the value to be used. The default value is 0.
- setDenyList(value)#
Sets If defined, list of entities to ignore. The rest will be processed. Do not include IOB prefix on labels
- Parameters:
value (List[str]) – If defined, list of entities to ignore. The rest will be processed. Do not include IOB prefix on labels
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations. :param *value: Input columns for the annotator :type *value: str
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMergeOverlapping(value)#
Sets whether to merge overlapping matched assertion annotations.
- Parameters:
value (bool) – Whether to merge overlapping matched assertion annotations. Default: True.
- setOrderingFeatures(value: list)#
Sets array of strings specifying the ordering features to use for overlapping entities. Possible values include: ‘begin’, ‘end’, ‘length’, ‘source’, ‘confidence’. Default: [‘begin’, ‘length’, ‘source’]
- Parameters:
value (list[str]) – Array of strings specifying the ordering features to use for overlapping entities.
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setSelectionStrategy(value)#
Determines the strategy for selecting annotations. Annotations can be selected either sequentially based on their order (Sequential) or using a more diverse strategy (DiverseLonger). Currently, only Sequential and DiverseLonger options are available. Default: Sequential.
- Parameters:
value (str) – Determines the strategy for selecting annotations.
- setSortByBegin(value)#
Sets whether to sort the annotations by begin at the end of the merge and filter process. Default: False.
- Parameters:
value (bool) – Whether to sort the annotations by begin at the end of the merge and filter process. Default: False.
- setWhiteList(value)#
Sets If defined, list of entities to process. The rest will be ignored. Do not include IOB prefix on labels
- Parameters:
value (List[str]) – If defined, list of entities to process. The rest will be ignored. Do not include IOB prefix on labels
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.