sparknlp_jsl.annotator.regex.regex_matcher
#
Contains classes for the RegexMatcherInternal.
Module Contents#
Classes#
Uses rules to match a set of regular expressions and associate them with a provided entity. |
|
Instantiated model of the RegexMatcherInternal. |
- class RegexMatcherInternal#
Bases:
sparknlp_jsl.common.AnnotatorApproachInternal
,sparknlp_jsl.annotator.MergeCommonParams
Uses rules to match a set of regular expressions and associate them with a provided entity.
A rule consists of a regex pattern and an entity, delimited by a character of choice. An example could be “d{4}/dd/dd,date” which will match strings like “1970/01/01” to the entity “date”.
Rules must be provided by either
setRules()
(followed bysetDelimiter()
) or an external file.To use an external file, a dictionary of predefined regular expressions must be provided with
setExternalRules()
. The dictionary can be set in the form of a delimited text file.Input Annotation types
Output Annotation type
DOCUMENT
CHUNK
- Parameters:
strategy – Can be either MATCH_FIRST|MATCH_ALL|MATCH_COMPLETE, by default “MATCH_ALL”
rules – Regex rules to match the entity with
delimiter – Delimiter for rules provided with setRules
externalRules – external resource to rules, needs ‘delimiter’ in options
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline
In this example, the
rules.txt
has the form of:the\s\w+, followed by 'the' ceremonies, ceremony
where each regex is separated by the entity
","
>>> documentAssembler = DocumentAssembler().setInputCol("text").setOutputCol("document") >>> sentence = SentenceDetector().setInputCols(["document"]).setOutputCol("sentence") >>> regexMatcher = RegexMatcherInternal() \ ... .setExternalRules("src/test/resources/regex-matcher/rules.txt", ",") \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("regex") \ ... .setStrategy("MATCH_ALL") >>> pipeline = Pipeline().setStages([documentAssembler, sentence, regexMatcher]) >>> data = spark.createDataFrame([[ ... "My first sentence with the first rule. This is my second sentence with ceremonies rule." ... ]]).toDF("text") >>> results = pipeline.fit(data).transform(data) >>> results.selectExpr("explode(regex) as result").show(truncate=False) +--------------------------------------------------------------------------------------------+ |result | +--------------------------------------------------------------------------------------------+ |[chunk, 23, 31, the first, [entity -> followed by 'the', sentence -> 0, chunk -> 0], []]| |[chunk, 71, 80, ceremonies, [entity -> ceremony, sentence -> 1, chunk -> 0], []] | +--------------------------------------------------------------------------------------------+
- delimiter#
- externalRules#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- mergeOverlapping#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'chunk'#
- outputCol#
- rules#
- skipLPInputColsValidation = True#
- strategy#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- fit(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = ...) M #
- fit(dataset: pyspark.sql.dataframe.DataFrame, params: List[pyspark.ml._typing.ParamMap] | Tuple[pyspark.ml._typing.ParamMap]) List[M]
Fits a model to the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input dataset.params (dict or list or tuple, optional) – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
- Returns:
fitted model(s)
- Return type:
Transformer
or a list ofTransformer
- fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[pyspark.ml._typing.ParamMap]) Iterator[Tuple[int, M]] #
Fits a model to the input dataset for each param map in paramMaps.
New in version 2.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input dataset.paramMaps (
collections.abc.Sequence
) – A Sequence of param maps.
- Returns:
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
- Return type:
_FitMultipleIterator
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setDelimiter(value)#
Sets the delimiter for rules.
- Parameters:
value (str) – Delimiter for the rules
- setExternalRules(path, delimiter, read_as=ReadAs.TEXT, options={'format': 'text'})#
Sets external resource to rules, needs ‘delimiter’ in options.
Only one of either parameter rules or externalRules must be set.
- Parameters:
path (str) – Path to the source files
delimiter (str) – Delimiter for the dictionary file. Can also be set it options.
read_as (str, optional) – How to read the file, by default ReadAs.TEXT
options (dict, optional) – Options to read the resource, by default {“format”: “text”}
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMergeOverlapping(value)#
Sets whether to merge overlapping chunks. Defaults to true
- Parameters:
value (boolean) – whether to merge overlapping chunks. Defaults to true
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setRules(value)#
Sets the regex rules to match the entity with.
The rules must consist of a regex pattern and an entity for that pattern. The regex pattern and the entity must be delimited by a character that will also have to set with setDelimiter.
Only one of either parameter rules or externalRules must be set.
Examples
>>> regexMatcher = RegexMatcherInternal() \ ... .setRules(["\d{4}\/\d\d\/\d\d,date", "\d{2}\/\d\d\/\d\d,short_date"]) \ ... .setDelimiter(",") \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("regex") \ ... .setStrategy("MATCH_ALL")
- Parameters:
value (List[str]) – List of rules
- setStrategy(value)#
Sets matching strategy, by default “MATCH_ALL”.
Can be either MATCH_FIRST|MATCH_ALL|MATCH_COMPLETE.
- Parameters:
value (str) – Matching Strategy
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.
- class RegexMatcherInternalModel(classname='com.johnsnowlabs.nlp.annotators.regex.RegexMatcherInternalModel', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModel
,sparknlp_jsl.annotator.MergeCommonParams
Instantiated model of the RegexMatcherInternal.
This is the instantiated model of the
RegexMatcherInternal
. For training your own model, please see the documentation of that class.Input Annotation types
Output Annotation type
DOCUMENT
CHUNK
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- mergeOverlapping#
- name = 'RegexMatcherInternalModel'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'chunk'#
- outputCol#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- static pretrained(name='email_matcher', lang='en', remote_loc='clinical/models')#
Downloads and loads a pretrained model.
- Parameters:
name (str, optional) – Name of the pretrained model, by default “email_matcher”
lang (str, optional) – Language of the pretrained model, by default “en”
remote_loc (str, optional) – Optional remote address of the resource, by default ‘clinical/models’. Will use Spark NLPs repositories otherwise.
- Returns:
The restored model
- Return type:
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMergeOverlapping(value)#
Sets whether to merge overlapping chunks. Defaults to true
- Parameters:
value (boolean) – whether to merge overlapping chunks. Defaults to true
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.