sparknlp_jsl.annotator.ner.zero_shot_ner
#
Module Contents#
Classes#
Zero shot named entity recognition based on RoBertaForQuestionAnswering. |
- class ZeroShotNerModel(classname='com.johnsnowlabs.nlp.annotators.ner.ZeroShotNerModel', java_model=None)#
Bases:
sparknlp.annotator.classifier_dl.RoBertaForQuestionAnswering
,sparknlp_jsl.common.HasEngine
Zero shot named entity recognition based on RoBertaForQuestionAnswering.
Input Annotation types
Output Annotation type
DOCUMENT, TOKEN
NAMED_ENTITY
- Parameters:
entityDefinitions –
A dictionary with definitions of named entities. The keys of dictionary are the entity labels and the values are lists of questions. For example:
>>> { >>> "CITY": ["Which city?", "Which town?"], >>> "NAME": ["What is her name?", "What is his name?"] >>> }
predictionThreshold – Minimal confidence score to encode an entity (Default: 0.01f)
ignoreEntities – A list of entity labels which are discarded from the output.
Examples
>>> document_assembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> sentence_detector = annotators.SentenceDetector()\ ... .setInputCols(["document"])\ ... .setOutputCol("sentence") >>> tokenizer = annotators.Tokenizer()\ ... .setInputCols(["sentence"])\ ... .setOutputCol("token") >>> zero_shot_ner = ZeroShotNerModel()\ ... .load("/models/sparknlp/zero_shot_ner")\ ... .setEntityDefinitions( ... { ... "NAME": ["What is his name?", "What is my name?", "What is her name?"], ... "CITY": ["Which city?", "Which is the city?"] ... })\ ... .setInputCols(["sentence", "token"])\ ... .setOutputCol("zero_shot_ner")\ >>> data = spark.createDataFrame( ... [["My name is Clara, I live in New York and Hellen lives in Paris."]] ... ).toDF("text") >>> Pipeline() \ ... .setStages([document_assembler, sentence_detector, tokenizer, zero_shot_ner]) \ ... .fit(data) \ ... .transform(data) \ ... .selectExpr("document", "explode(zero_shot_ner) AS entity")\ ... .select( ... "document.result", ... "entity.result", ... "entity.metadata.word", ... "entity.metadata.confidence", ... "entity.metadata.question")\ ... .show(truncate=False) +-----------------------------------------------------------------+------+------+----------+------------------+ |result |result|word |confidence|question | +-----------------------------------------------------------------+------+------+----------+------------------+ |[My name is Clara, I live in New York and Hellen lives in Paris.]|B-CITY|Paris |0.5328949 |Which is the city?| |[My name is Clara, I live in New York and Hellen lives in Paris.]|B-NAME|Clara |0.9360068 |What is my name? | |[My name is Clara, I live in New York and Hellen lives in Paris.]|B-CITY|New |0.83294415|Which city? | |[My name is Clara, I live in New York and Hellen lives in Paris.]|I-CITY|York |0.83294415|Which city? | |[My name is Clara, I live in New York and Hellen lives in Paris.]|B-NAME|Hellen|0.45366877|What is her name? | +-----------------------------------------------------------------+------+------+----------+------------------+
- batchSize#
- caseSensitive#
- coalesceSentences#
- configProtoBytes#
- engine#
- getter_attrs = []#
- ignoreEntities#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- maxSentenceLength#
- max_length_limit = 512#
- name = 'ZeroShotNerModel'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'named_entity'#
- outputCol#
- predictionThreshold#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getBatchSize()#
Gets current batch size.
- Returns:
Current batch size
- Return type:
int
- getCaseSensitive()#
Gets whether to ignore case in tokens for embeddings matching.
- Returns:
Whether to ignore case in tokens for embeddings matching
- Return type:
bool
- getClasses()#
Returns the list of entities which are recognized.
- getEngine()#
- Returns:
Deep Learning engine used for this model”
- Return type:
str
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getMaxSentenceLength()#
Gets max sentence of the model.
- Returns:
Max sentence length to process
- Return type:
int
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- static load(path: str)#
Load a pre-trained ZeroShotNerModel from a local path.
- Parameters:
path (str) – Path to the pre-trained model.
- Returns:
A pre-trained ZeroShotNerModel.
- Return type:
- static loadSavedModel(folder, spark_session)#
Loads a locally saved model.
- Parameters:
folder (str) – Folder of the saved model
spark_session (pyspark.sql.SparkSession) – The current SparkSession
- Returns:
The restored model
- Return type:
RoBertaForQuestionAnswering
- static pretrained(name='zero_shot_ner_roberta', lang='en', remote_loc='clinical/models')#
Download a pre-trained ZeroShotNerModel.
- Parameters:
name (str) – Name of the pre-trained model, by default “zero_shot_ner_roberta”
lang (str) – Language of the pre-trained model, by default “en”
remote_loc (str) – Remote location of the pre-trained model. If None, use the open-source location. Other values are “clinical/models”, “finance/models”, or “legal/models”.
- Returns:
A pre-trained ZeroShotNerModel.
- Return type:
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setBatchSize(v)#
Sets batch size.
- Parameters:
v (int) – Batch size
- setCaseSensitive(value)#
Sets whether to ignore case in tokens for embeddings matching.
- Parameters:
value (bool) – Whether to ignore case in tokens for embeddings matching
- setConfigProtoBytes(b)#
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
b (List[int]) – ConfigProto from tensorflow, serialized into byte array
- setEntityDefinitions(definitions: dict)#
Set entity definitions.
- Parameters:
definitions (dict[str, list[str]]) –
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMaxSentenceLength(value)#
Sets max sentence length to process.
Note that a maximum limit exists depending on the model. If you are working with long single sequences, consider splitting up the input first with another annotator e.g. SentenceDetector.
- Parameters:
value (int) – Max sentence length to process
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setPredictionThreshold(threshold: float)#
Sets the minimal confidence score to encode an entity.
- Parameters:
threshold (float) – minimal confidence score to encode an entity (default is 0.1)
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.