sparknlp_jsl.annotator.ner.iob_tagger
#
Module Contents#
Classes#
Merges token tags and NER labels from chunks in the specified format. |
- class IOBTagger(classname='com.johnsnowlabs.nlp.annotators.ner.IOBTagger', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Merges token tags and NER labels from chunks in the specified format. For example output columns as inputs from
Input Annotation types
Output Annotation type
TOKEN, CHUNK
NAMED_ENTITY
- Parameters:
Scheme – Format of tags, either IOB or BIOES
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp_jsl.common import * >>> from sparknlp.annotator import * >>> from sparknlp.training import * >>> import sparknlp_jsl >>> from sparknlp_jsl.base import * >>> from sparknlp_jsl.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ >>> data = spark.createDataFrame([["A 63-year-old man presents to the hospital ..."]]).toDF("text") >>> documentAssembler = DocumentAssembler().setInputCol("text").setOutputCol("document") >>> sentenceDetector = SentenceDetector().setInputCols(["document"]).setOutputCol("sentence") >>> tokenizer = Tokenizer().setInputCols(["sentence"]).setOutputCol("token") >>> embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models").setOutputCol("embs") >>> nerModel = MedicalNerModel.pretrained("ner_jsl", "en", "clinical/models").setInputCols(["sentence", "token", "embs"]).setOutputCol("ner") >>> nerConverter = NerConverter().setInputCols(["sentence", "token", "ner"]).setOutputCol("ner_chunk") ... >>> iobTagger = IOBTagger().setInputCols(["token", "ner_chunk"]).setOutputCol("ner_label") >>> pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, embeddings, nerModel, nerConverter, iobTagger]) ... >>> result.selectExpr("explode(ner_label) as a") ... .selectExpr("a.begin","a.end","a.result as chunk","a.metadata.word as word") ... .where("chunk!='O'").show(5, False) +-----+---+-----------+-----------+ |begin|end|chunk |word | +-----+---+-----------+-----------+ |5 |15 |B-Age |63-year-old| |17 |19 |B-Gender |man | |64 |72 |B-Modifier |recurrent | |98 |107|B-Diagnosis|cellulitis | |110 |119|B-Diagnosis|pneumonias | +-----+---+-----------+-----------+
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- name = 'IOBTaggerModel'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'named_entity'#
- outputCol#
- scheme#
- skipLPInputColsValidation = True#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setScheme(scheme)#
Sets format of tags, either IOB or BIOES
- Parameters:
scheme (str) – Format of tags, either IOB or BIOES
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.