sparknlp_jsl.annotator.annotation_merger
#
Module Contents#
Classes#
Merges Annotations from multiple columns. |
- class AnnotationMerger(classname='com.johnsnowlabs.annotator.AnnotationMerger', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Merges Annotations from multiple columns.
Input Annotation types
Output Annotation type
ANY
ANY
- Parameters:
inputType – The type of the annotations that you want to merge. Possible values
document|token|wordpiece|word_embeddings|sentence_embeddings|category|date|sentiment|pos|chunk|named_entity|regex|dependency|labeled_dependency|language|keyword
Examples
>>> empty_data = spark.createDataFrame([[""]]).toDF("text") >>> document1 = DocumentAssembler().setInputCol("text").setOutputCol("document1") >>> document2 = DocumentAssembler().setInputCol("text").setOutputCol("document2") >>> annotation_merger = AnnotationMerger()\ ... .setInputCols("document1", "document2")\ ... .setInputType("document")\ ... .setOutputCol("all_docs") >>> >>> pipelineModel = Pipeline().setStages([document1, document2, annotation_merger]).fit(empty_data) >>> lp = LightPipeline(pipelineModel) >>> lp.fullAnnotate("one doc to be replicated") [{'document1': [Annotation(document, 0, 23, one doc to be replicated, {})], 'document2': [Annotation(document, 0, 23, one doc to be replicated, {})], 'all_docs': [Annotation(document, 0, 23, one doc to be replicated, {}), Annotation(document, 0, 23, one doc to be replicated, {})]}]
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- inputType#
- lazyAnnotator#
- name = 'AnnotationMerger'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType#
- outputCol#
- skipLPInputColsValidation = True#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (str) – Input columns for the annotator
- setInputType(value)#
Sets the type of the entity that you want to filter by default sentence_embedding
- Parameters:
value (int) – The type of the entity that you want to filter by default sentence_embedding
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.