sparknlp_jsl.annotator.matcher.text_matcher_internal
#
Contains classes for the TextMatcherInternal.
Module Contents#
Classes#
Annotator to match exact phrases (by token) provided in a file against a |
|
Instantiated model of the TextMatcherInternal. |
- class TextMatcherInternal#
Bases:
sparknlp_jsl.common.AnnotatorApproachInternal
Annotator to match exact phrases (by token) provided in a file against a Document.
A text file of predefined phrases must be provided with
setEntities()
.Input Annotation types
Output Annotation type
DOCUMENT, TOKEN
CHUNK
- Parameters:
entities – ExternalResource for entities
caseSensitive – Whether to match regardless of case, by default True
mergeOverlapping – Whether to merge overlapping matched chunks, by default False
entityValue – Value for the entity metadata field
buildFromTokens – Whether the TextMatcherInternal should take the CHUNK from TOKEN
Examples
In this example, the entities file is of the form:
… dolore magna aliqua, entity_name_1 lorem ipsum dolor. sit, entity_name_1 laborum, entity_name_1 …
where each line represents an entity phrase to be extracted.
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> tokenizer = Tokenizer() \ ... .setInputCols(["document"]) \ ... .setOutputCol("token") >>> data = spark.createDataFrame([["Hello dolore magna aliqua. Lorem ipsum dolor. sit in laborum"]]).toDF("text") >>> entityExtractor = TextMatcherInternal() \ ... .setInputCols(["document", "token"]) \ ... .setEntities("src/test/resources/entity-extractor/test-phrases.txt", ReadAs.TEXT) \ ... .setOutputCol("entity") \ ... .setCaseSensitive(False) >>> pipeline = Pipeline().setStages([documentAssembler, tokenizer, entityExtractor]) >>> results = pipeline.fit(data).transform(data) >>> results.selectExpr("explode(entity) as result").show(truncate=False) +------------------------------------------------------------------------------------------+ |result | +------------------------------------------------------------------------------------------+ |[chunk, 6, 24, dolore magna aliqua, [entity -> entity, sentence -> 0, chunk -> 0], []] | |[chunk, 27, 48, Lorem ipsum dolor. sit, [entity -> entity, sentence -> 0, chunk -> 1], []]| |[chunk, 53, 59, laborum, [entity -> entity, sentence -> 0, chunk -> 2], []] | +------------------------------------------------------------------------------------------+
- buildFromTokens#
- caseSensitive#
- delimiter#
- entities#
- entityValue#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- mergeOverlapping#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'chunk'#
- outputCol#
- skipLPInputColsValidation = True#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- fit(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = ...) M #
- fit(dataset: pyspark.sql.dataframe.DataFrame, params: List[pyspark.ml._typing.ParamMap] | Tuple[pyspark.ml._typing.ParamMap]) List[M]
Fits a model to the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input dataset.params (dict or list or tuple, optional) – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
- Returns:
fitted model(s)
- Return type:
Transformer
or a list ofTransformer
- fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[pyspark.ml._typing.ParamMap]) Iterator[Tuple[int, M]] #
Fits a model to the input dataset for each param map in paramMaps.
New in version 2.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input dataset.paramMaps (
collections.abc.Sequence
) – A Sequence of param maps.
- Returns:
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
- Return type:
_FitMultipleIterator
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setBuildFromTokens(b)#
Sets whether the TextMatcherInternal should take the CHUNK from TOKEN.
- Parameters:
b (bool) – Whether the TextMatcherInternal should take the CHUNK from TOKEN
- setCaseSensitive(b)#
Sets whether to match regardless of case, by default True.
- Parameters:
b (bool) – Whether to match regardless of case
- setDelimiter(b)#
Sets Value for the delimiter between Phrase, Entity.
- Parameters:
b (bool) – Whether the TextMatcherInternal should take the CHUNK from TOKEN
- setEntities(path, read_as=ReadAs.TEXT, options={'format': 'text'})#
Sets the external resource for the entities.
- Parameters:
path (str) – Path to the external resource
read_as (str, optional) – How to read the resource, by default ReadAs.TEXT
options (dict, optional) – Options for reading the resource, by default {“format”: “text”}
- setEntityValue(b)#
Sets value for the entity metadata field.
- Parameters:
b (str) – Value for the entity metadata field
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMergeOverlapping(b)#
Sets whether to merge overlapping matched chunks, by default False.
- Parameters:
b (bool) – Whether to merge overlapping matched chunks
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.
- class TextMatcherInternalModel(classname='com.johnsnowlabs.nlp.annotators.matcher.TextMatcherInternalModel', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Instantiated model of the TextMatcherInternal.
This is the instantiated model of the
TextMatcherInternal
. For training your own model, please see the documentation of that class.Input Annotation types
Output Annotation type
DOCUMENT, TOKEN
CHUNK
- Parameters:
mergeOverlapping – Whether to merge overlapping matched chunks, by default False
entityValue – Value for the entity metadata field
buildFromTokens – Whether the TextMatcherInternal should take the CHUNK from TOKEN
- buildFromTokens#
- caseSensitive#
- delimiter#
- entityValue#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- mergeOverlapping#
- name = 'TextMatcherInternalModel'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'chunk'#
- outputCol#
- searchTrie#
- skipLPInputColsValidation = True#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getCaseSensitive()#
Gets whether the model is matching regardless of case
- getDelimiter()#
Gets value for the delimiter between Phrase, Entity.
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- static pretrained(name, lang='en', remote_loc=None)#
Downloads and loads a pretrained model.
- Parameters:
name (str, optional) – Name of the pretrained model
lang (str, optional) – Language of the pretrained model, by default “en”
remote_loc (str, optional) – Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
The restored model
- Return type:
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setBuildFromTokens(b)#
Sets whether the TextMatcherInternal should take the CHUNK from TOKEN.
- Parameters:
b (bool) – Whether the TextMatcherInternal should take the CHUNK from TOKEN
- setDelimiter(b)#
Sets Value for the delimiter between Phrase, Entity.
- Parameters:
b (bool) – Whether the TextMatcherInternal should take the CHUNK from TOKEN
- setEntityValue(b)#
Sets value for the entity metadata field.
- Parameters:
b (str) – Value for the entity metadata field
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMergeOverlapping(b)#
Sets whether to merge overlapping matched chunks, by default False.
- Parameters:
b (bool) – Whether to merge overlapping matched chunks
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.