sparknlp_jsl.annotator.multi_chunk2_doc
#
Contains classes for MultiChunk2Doc.
Module Contents#
Classes#
MultiChunk2Doc annotator merges a given chunks to create a document. |
- class MultiChunk2Doc(classname='com.johnsnowlabs.nlp.annotators.MultiChunk2Doc', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
,sparknlp_jsl.annotator.white_black_list_params.WhiteBlackListParams
MultiChunk2Doc annotator merges a given chunks to create a document. During document creation, a specific whitelist and blacklist filter can be applied, and case sensitivity can be adjusted. See Also:
sparknlp_jsl.annotator.WhiteBlackListParams
for filtering options.Additionally, specified prefix and suffix texts can be placed before and after the merged chunks in the resulting document. And a separator can be placed between the chunks.
Converts
CHUNK
type annotations intoDOCUMENT
typeInput Annotation types
Output Annotation type
CHUNK
DOCUMENT
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from sparknlp_jsl.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler().setInputCol("text").setOutputCol("document") >>> sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models") \ ... .setInputCols("document").setOutputCol("sentence") >>> tokenizer = Tokenizer().setInputCols("sentence").setOutputCol("token") >>> embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models") \ ... .setInputCols("sentence", "token").setOutputCol("embeddings") >>> clinical_ner = MedicalNerModel.pretrained("ner_clinical_large_langtest", "en", "clinical/models") \ ... .setInputCols(["sentence", "token", "embeddings"]).setOutputCol("ner") >>> ner_converter = NerConverterInternal().setInputCols(["sentence", "token", "ner"]).setOutputCol("ner_chunk") >>> multi_chunk2_doc = MultiChunk2Doc() \ ... .setInputCols(["ner_chunk"]) \ ... .setOutputCol("new_document") \ ... .setWhiteList(["test"]) \ ... .setCaseSensitive(False) \ ... .setPrefix("<") \ ... .setSeparator("><") \ ... .setSuffix(">") >>> data = spark.createDataFrame([["A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation " + \ ... "and subsequent type two diabetes mellitus (T2DM), " + \ ... "one prior episode of HTG-induced pancreatitis three years prior to presentation, " + \ ... "and associated with an acute hepatitis, presented with a one-week history of polyuria, poor appetite, and vomiting. " + \ ... "She was on metformin, glipizide, and dapagliflozin for T2DM and atorvastatin and gemfibrozil for HTG. " + \ ... "She had been on dapagliflozin for six months at the time of presentation. " + \ ... "Physical examination on presentation was significant for dry oral mucosa ; " + \ ... "significantly , her abdominal examination was benign with no tenderness, guarding, or rigidity."]]) \ ... .toDF("text") >>> pipeline = Pipeline() \ ... .setStages([documentAssembler, sentenceDetector, tokenizer, embeddings, clinical_ner, ner_converter, multi_chunk2_doc]) \ ... .fit(data) >>> result = pipeline.transform(data) >>> result.selectExpr("new_document").show(truncate=False)
- blackList#
- caseSensitive#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- name = 'MultiChunk2Doc'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType#
- outputCol#
- prefix#
- separator#
- skipLPInputColsValidation = True#
- suffix#
- uid#
- whiteList#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setBlackList(value)#
Sets If defined, list of entities to ignore. The rest will be processed. Do not include IOB prefix on labels
- Parameters:
value (List[str]) – If defined, list of entities to ignore. The rest will be processed. Do not include IOB prefix on labels
- setCaseSensitive(value)#
Determines whether the definitions of the white listed and black listed entities are case sensitive or not.
- Parameters:
value (bool) – Whether white listed and black listed entities are case sensitive or not. Default: True.
- setDenyList(value)#
Sets If defined, list of entities to ignore. The rest will be processed. Do not include IOB prefix on labels
- Parameters:
value (List[str]) – If defined, list of entities to ignore. The rest will be processed. Do not include IOB prefix on labels
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setPrefix(value: str)#
Sets the prefix to add to the result. Default: “”.
- Parameters:
value (str) – the prefix to add to the result. Default: “”.
- setSeparator(value: str)#
Sets the separator to add between the chunks. Default: “,”.
- Parameters:
value (str) – the separator to add between the chunks. Default: “,”.
- setSuffix(value: str)#
Sets the suffix to add to the result. Default: “”.
- Parameters:
value (str) – the suffix to add to the result. Default: “”.
- setWhiteList(value)#
Sets If defined, list of entities to process. The rest will be ignored. Do not include IOB prefix on labels
- Parameters:
value (List[str]) – If defined, list of entities to process. The rest will be ignored. Do not include IOB prefix on labels
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.