sparknlp_jsl.annotator.ner.ner_chunker
#
Module Contents#
Classes#
Extracts phrases that fits into a known pattern using the NER tags. Useful for entity groups with neighboring tokens |
- class NerChunker(classname='com.johnsnowlabs.nlp.annotators.ner.NerChunker', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
- Extracts phrases that fits into a known pattern using the NER tags. Useful for entity groups with neighboring tokens
when there is no pretrained NER model to address certain issues. A Regex needs to be provided to extract the tokens between entities.
Input Annotation types
Output Annotation type
DOCUMENT, CHUNK
NAMED_ENTITY
- Parameters:
setRegexParsers – A list of regex patterns to match chunks, for example: [“‹DT›?‹JJ›*‹NN”]
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp_jsl.base import * >>> from sparknlp.annotator import * >>> from sparknlp_jsl.annotator import * >>> from sparknlp.training import * >>> from pyspark.ml import Pipeline
>>> document_assembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") ... >>> sentence_detector = SentenceDetector() \ ... .setInputCol("document") \ ... .setOutputCol("sentence") ... >>> tokenizer = Tokenizer() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("token") ... >>> embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models") \ ... .setInputCols(["sentence", "token"]) \ ... .setOutputCol("embeddings") ... .setCaseSensitive(False) ... >>> ner = MedicalNerModel.pretrained("ner_radiology", "en", "clinical/models") \ ... .setInputCols(["sentence", "token","embeddings"]) \ ... .setOutputCol("ner") ... .setCaseSensitive(False) ... >>> chunker = NerChunker() \ ... .setInputCols(["sentence","ner"]) \ ... .setChunkCol("ner_chunk") \ ... .setOutputCol("chunk") ... .setRegexParsers(Array("<ImagingFindings>.*<BodyPart>")) ... ... >>> pipeline = Pipeline(stages=[ ... document_assembler, ... sentence_detector, ... tokenizer, ... embeddings, ... ner, ... chunker ...]) >>> result = pipeline.fit.fit(dataset).transform(dataset)
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- name = 'NerChunker'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType#
- outputCol#
- regexParsers#
- skipLPInputColsValidation = True#
- uid#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setRegexParsers(b)#
Sets list of regex patterns to match chunks, for example: Array(“‹DT›?‹JJ›*‹NN›”
- Parameters:
b (List[String]) – list of regex patterns to match chunks, for example: Array(“‹DT›?‹JJ›*‹NN›”
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.