sparknlp_jsl.annotator.classification.document_ml_classifier#

Module Contents#

Classes#

DocumentMLClassifierApproach

Trains a model to classify documents with a Logarithmic Regression algorithm. Training data requires columns for

DocumentMLClassifierModel

Classifies documents with a Logarithmic Regression algorithm.

DocumentMLClassifierParams

class DocumentMLClassifierApproach#

Bases: sparknlp_jsl.common.AnnotatorApproachInternal, DocumentMLClassifierParams

Trains a model to classify documents with a Logarithmic Regression algorithm. Training data requires columns for text and their label. The result is a trained GenericClassifierModel.

Input Annotation types

Output Annotation type

TOKEN `

CATEGORY

Parameters:
  • labelCol – Column with the value result we are trying to predict.

  • maxIter – maximum number of iterations.

  • tol – convergence tolerance after each iteration.

  • fitIntercept – whether to fit an intercept term, default is true.

  • labels – array to output the label in the original form.

  • vectorizationModelPath – specify the vectorization model if it has been already trained.

  • classificationModelPath – specify the classification model if it has been already trained.

  • classificationModelClass – specify the SparkML classification class; possible values are: logreg, svm.

  • maxTokenNgram – the max number of tokens for Ngrams

  • minTokenNgram – the min number of tokens for Ngrams

Examples

>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp_jsl.common import *
>>> from sparknlp.annotator import *
>>> from sparknlp.training import *
>>> import sparknlp_jsl
>>> from sparknlp_jsl.base import *
>>> from sparknlp_jsl.annotator import *
>>> from pyspark.ml import Pipeline

An example pipeline could then be defined like this

>>> tokenizer = Tokenizer() \
...    .setInputCols("document") \
...    .setOutputCol("token")
...
>>> normalizer = Normalizer() \
...    .setInputCols("token") \
...    .setOutputCol("normalized")
...
>>> stopwords_cleaner = StopWordsCleaner()\
...    .setInputCols("normalized")\
...    .setOutputCol("cleanTokens")\
...    .setCaseSensitive(False)
...
...stemmer = Stemmer()     ...    .setInputCols("cleanTokens")     ...    .setOutputCol("stem")
...
>>> gen_clf = DocumentMLClassifierApproach() \
...    .setlabelCol("category") \
...    .setInputCols("stem") \
...    .setOutputCol("prediction")
...
>>> pipeline = Pipeline().setStages([
...    document_assembler,
...    tokenizer,
...    normalizer,
...    stopwords_cleaner,
...    stemmer,
...    gen_clf
...])
...
>>> clf_model = pipeline.fit(data)
classificationModelClass#
classificationModelPath#
fitIntercept#
getter_attrs = []#
inputAnnotatorTypes#
inputCols#
labelCol#
labels#
lazyAnnotator#
maxIter#
maxTokenNgram#
mergeChunks#
minTokenNgram#
optionalInputAnnotatorTypes = []#
outputAnnotatorType = 'category'#
outputCol#
skipLPInputColsValidation = True#
tol#
uid = ''#
vectorizationModelPath#
clear(param: pyspark.ml.param.Param) None#

Clears a param from the param map if it has been explicitly set.

copy(extra: pyspark.ml._typing.ParamMap | None = None) JP#

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters:

extra (dict, optional) – Extra parameters to copy to the new instance

Returns:

Copy of this instance

Return type:

JavaParams

explainParam(param: str | Param) str#

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams() str#

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap#

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters:

extra (dict, optional) – extra param values

Returns:

merged param map

Return type:

dict

fit(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = ...) M#
fit(dataset: pyspark.sql.dataframe.DataFrame, params: List[pyspark.ml._typing.ParamMap] | Tuple[pyspark.ml._typing.ParamMap]) List[M]

Fits a model to the input dataset with optional parameters.

New in version 1.3.0.

Parameters:
  • dataset (pyspark.sql.DataFrame) – input dataset.

  • params (dict or list or tuple, optional) – an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.

Returns:

fitted model(s)

Return type:

Transformer or a list of Transformer

fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[pyspark.ml._typing.ParamMap]) Iterator[Tuple[int, M]]#

Fits a model to the input dataset for each param map in paramMaps.

New in version 2.3.0.

Parameters:
  • dataset (pyspark.sql.DataFrame) – input dataset.

  • paramMaps (collections.abc.Sequence) – A Sequence of param maps.

Returns:

A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.

Return type:

_FitMultipleIterator

getInputCols()#

Gets current column names of input annotations.

getLazyAnnotator()#

Gets whether Annotator should be evaluated lazily in a RecursivePipeline.

getOrDefault(param: str) Any#
getOrDefault(param: Param[T]) T

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getOutputCol()#

Gets output column name of annotations.

getParam(paramName: str) Param#

Gets a param by its name.

getParamValue(paramName)#

Gets the value of a parameter.

Parameters:

paramName (str) – Name of the parameter

hasDefault(param: str | Param[Any]) bool#

Checks whether a param has a default value.

hasParam(paramName: str) bool#

Tests whether this instance contains a param with a given (string) name.

inputColsValidation(value)#
isDefined(param: str | Param[Any]) bool#

Checks whether a param is explicitly set by user or has a default value.

isSet(param: str | Param[Any]) bool#

Checks whether a param is explicitly set by user.

classmethod load(path: str) RL#

Reads an ML instance from the input path, a shortcut of read().load(path).

classmethod read()#

Returns an MLReader instance for this class.

save(path: str) None#

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param: Param, value: Any) None#

Sets a parameter in the embedded param map.

setClassificationModelClass(value)#

Sets a the classification model class from SparkML to use; possible values are: logreg, svm.

Parameters:

label (str) – specify the SparkML classification class; possible values are: logreg, svm.

setClassificationModelPath(value)#

Sets a path to the classification model if it has been already trained.

Parameters:

label (str) – Path to the classification model if it has been already trained.

setFitIntercept(merge)#

Sets whether to fit an intercept term, default is true.

Parameters:

label (str) – Whether to fit an intercept term, default is true.

setForceInputTypeValidation(etfm)#
setInputCols(*value)#

Sets column names of input annotations.

Parameters:

*value (List[str]) – Input columns for the annotator

setLabelCol(label)#

Sets column with the value result we are trying to predict.

Parameters:

label (str) – Column with the value result we are trying to predict.

setLabels(value)#

Sets array to output the label in the original form.

Parameters:

label (list) – array to output the label in the original form.

setLazyAnnotator(value)#

Sets whether Annotator should be evaluated lazily in a RecursivePipeline.

Parameters:

value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline

setMaxIter(k)#

Sets maximum number of iterations.

Parameters:

k (int) – Maximum number of iterations.

setMaxTokenNgram(k)#

Sets maximum number of tokens for Ngrams.

Parameters:

k (int) – Maximum number of tokens for Ngrams.

setMergeChunks(merge)#

Sets whether to merge all chunks in a document or not (Default: false)

Parameters:

merge (list) – whether to merge all chunks in a document or not (Default: false)

setMinTokenNgram(k)#

Sets minimum number of tokens for Ngrams.

Parameters:

k (int) – Minimum number of tokens for Ngrams.

setOutputCol(value)#

Sets output column name of annotations.

Parameters:

value (str) – Name of output column

setParamValue(paramName)#

Sets the value of a parameter.

Parameters:

paramName (str) – Name of the parameter

setTol(dist)#

Sets convergence tolerance after each iteration.

Parameters:

dist (float) – Convergence tolerance after each iteration.

setVectorizationModelPath(value)#

Sets a path to the classification model if it has been already trained.

Parameters:

label (str) – Path to the classification model if it has been already trained.

write() JavaMLWriter#

Returns an MLWriter instance for this ML instance.

class DocumentMLClassifierModel(classname='com.johnsnowlabs.nlp.annotators.classification.DocumentMLClassifierModel', java_model=None)#

Bases: sparknlp_jsl.common.AnnotatorModelInternal, DocumentMLClassifierParams

Classifies documents with a Logarithmic Regression algorithm.

Input Annotation types

Output Annotation type

TOKEN

CATEGORY

Parameters:
  • mergeChunks – Whether to merge all chunks in a document or not (Default: false)

  • labels – Array to output the label in the original form.

  • vectorizationModel – Vectorization model if it has been already trained.

  • classificationModel – Classification model if it has been already trained.

classificationModel#
getter_attrs = []#
inputAnnotatorTypes#
inputCols#
labels#
lazyAnnotator#
maxTokenNgram#
mergeChunks#
minTokenNgram#
name = 'DocumentMLClassifierModel'#
optionalInputAnnotatorTypes = []#
outputAnnotatorType = 'category'#
outputCol#
skipLPInputColsValidation = True#
uid = ''#
vectorizationModel#
clear(param: pyspark.ml.param.Param) None#

Clears a param from the param map if it has been explicitly set.

copy(extra: pyspark.ml._typing.ParamMap | None = None) JP#

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters:

extra (dict, optional) – Extra parameters to copy to the new instance

Returns:

Copy of this instance

Return type:

JavaParams

explainParam(param: str | Param) str#

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams() str#

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap#

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters:

extra (dict, optional) – extra param values

Returns:

merged param map

Return type:

dict

getInputCols()#

Gets current column names of input annotations.

getLazyAnnotator()#

Gets whether Annotator should be evaluated lazily in a RecursivePipeline.

getOrDefault(param: str) Any#
getOrDefault(param: Param[T]) T

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getOutputCol()#

Gets output column name of annotations.

getParam(paramName: str) Param#

Gets a param by its name.

getParamValue(paramName)#

Gets the value of a parameter.

Parameters:

paramName (str) – Name of the parameter

hasDefault(param: str | Param[Any]) bool#

Checks whether a param has a default value.

hasParam(paramName: str) bool#

Tests whether this instance contains a param with a given (string) name.

inputColsValidation(value)#
isDefined(param: str | Param[Any]) bool#

Checks whether a param is explicitly set by user or has a default value.

isSet(param: str | Param[Any]) bool#

Checks whether a param is explicitly set by user.

classmethod load(path: str) RL#

Reads an ML instance from the input path, a shortcut of read().load(path).

static pretrained(name='classifierml_ade', lang='en', remote_loc='clinical/models')#

Downloads and loads a pretrained model.

Parameters:
  • name (str, optional) – Name of the pretrained model, by default “classifierml_ade”

  • lang (str, optional) – Language of the pretrained model, by default “en”

  • remote_loc (str, optional) – Optional remote address of the resource, by default “clinical/models”. Will use Spark NLPs repositories otherwise.

Returns:

The restored model

Return type:

DocumentMLClassifierModel

classmethod read()#

Returns an MLReader instance for this class.

save(path: str) None#

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param: Param, value: Any) None#

Sets a parameter in the embedded param map.

setClassificationModel(model)#

Sets a path to the classification model if it has been already trained.

Parameters:

model (pyspark.ml.PipelineModel) – Classification model if it has been already trained.

setForceInputTypeValidation(etfm)#
setInputCols(*value)#

Sets column names of input annotations.

Parameters:

*value (List[str]) – Input columns for the annotator

setLabels(value)#

Sets array to output the label in the original form.

Parameters:

label (list) – array to output the label in the original form.

setLazyAnnotator(value)#

Sets whether Annotator should be evaluated lazily in a RecursivePipeline.

Parameters:

value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline

setMergeChunks(merge)#

Sets whether to merge all chunks in a document or not (Default: false)

Parameters:

merge (list) – whether to merge all chunks in a document or not (Default: false)

setOutputCol(value)#

Sets output column name of annotations.

Parameters:

value (str) – Name of output column

setParamValue(paramName)#

Sets the value of a parameter.

Parameters:

paramName (str) – Name of the parameter

setParams()#
setVectorizationModel(model)#

Sets a path to the classification model if it has been already trained.

Parameters:

model (pyspark.ml.PipelineModel) – Classification model if it has been already trained.

transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame#

Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters:
  • dataset (pyspark.sql.DataFrame) – input dataset

  • params (dict, optional) – an optional param map that overrides embedded params.

Returns:

transformed dataset

Return type:

pyspark.sql.DataFrame

write() JavaMLWriter#

Returns an MLWriter instance for this ML instance.

class DocumentMLClassifierParams#
labels#
maxTokenNgram#
mergeChunks#
minTokenNgram#
setLabels(value)#

Sets array to output the label in the original form.

Parameters:

label (list) – array to output the label in the original form.

setMergeChunks(merge)#

Sets whether to merge all chunks in a document or not (Default: false)

Parameters:

merge (list) – whether to merge all chunks in a document or not (Default: false)