sparknlp_jsl.annotator.rag.context_split_assembler
#
Contains Class for ContextSplitAssembler
Module Contents#
Classes#
Converts and assembles VECTOR_SIMILARITY_RANKINGS type annotations into DOCUMENT type. |
- class ContextSplitAssembler(classname='com.johnsnowlabs.nlp.annotators.rag.ContextSplitAssembler', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Converts and assembles VECTOR_SIMILARITY_RANKINGS type annotations into DOCUMENT type. The input annotations are expected to be of type VECTOR_SIMILARITY_RANKINGS and the output annotation type is DOCUMENT. It concatenates the results of the input annotations into a single result, separated by a join string. When explodeSplits is set to True, the splits are exploded into separate annotations. joinString parameter is used to add the delimiter between results of annotations when combining them into a single result.
Input Annotation types
Output Annotation type
VECTOR_SIMILARITY_RANKINGS
DOCUMENT
- Parameters:
joinString (str) – This parameter specifies the string that will be inserted between results of annotations when combining them into a single result. It acts as a delimiter, ensuring that the elements are properly separated and organized in the final result of annotation. Default: “ “.
explodeSplits (bool) – Whether to explode the splits into separate annotations or not. Default: False.
- explodeSplits#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- joinString#
- lazyAnnotator#
- name = 'ContextSplitAssembler'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType#
- outputCol#
- skipLPInputColsValidation = True#
- uid#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setExplodeSplits(value: bool)#
Sets the value of
explodeSplits
. Whether to explode the splits into separate annotations or not. Default: False.- Parameters:
value (bool) – Whether to explode the splits into separate annotations or not.
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setJoinString(value: str)#
Sets the value of
joinString
. This parameter specifies the string that will be inserted between results of annotations when combining them into a single result. It acts as a delimiter, ensuring that the elements are properly separated and organized in the final result of annotation. Default: “ “.- Parameters:
value (str) – This parameter specifies the string that will be inserted between results of annotations when combining them into a single result.
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.