sparknlp_jsl.annotator.deid.replacer
#
Module Contents#
Classes#
Replaces entities in the original text with new ones. |
- class Replacer(classname='com.johnsnowlabs.nlp.annotators.deid.Replacer', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Replaces entities in the original text with new ones.
This class allows to replace entities in the original text with the ones obtained with, for example, :py:class:: `DeIdentificationModel`_ or :py:class:: `DateNormalizer`_.
- useReplacement#
Specifies whether to use the replacement field from the metadata if it exists. Default: True.
- Type:
bool
- noneValuesTo#
Action to take when encountering a value of ‘NONE’ in the annotation.
- Type:
str
- placeHolder#
The value to replace ‘NONE’ values with when noneValuesTo is set to ‘place_holder’.
- Type:
str
- placeHolderDelimiters#
An array of two strings used as delimiters to wrap the placeholder or entity field. Default is [‘<’, ‘>’].
- Type:
list
- mappingsColumn#
This column maps the annotations to their corresponding chunks before the entities are replaced.
- Type:
str
- returnEntityMappings#
With this property you select if you want to return mapping column.
- Type:
bool
- staticEntityMappingsFallback#
Fallback option for static entity mappings. Allowed values: ‘entity’, ‘place_holder’, ‘skip’, ‘error’.
- Type:
str
- staticEntityMappings#
Static entity mappings. A dictionary with entity types as keys and replacement values as values.
- Type:
dict
Examples:
>>> documentAssembler = DocumentAssembler()\ ... .setInputCol("text")\ ... .setOutputCol("sentence")
>>> tokenizer = Tokenizer()\ ... .setInputCols("sentence")\ ... .setOutputCol("token")
>>> word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\ ... .setInputCols(["sentence", "token"])\ ... .setOutputCol("embeddings")
>>> clinical_ner = MedicalNerModel.pretrained("ner_deid_generic_augmented", "en", "clinical/models") \ ... .setInputCols(["sentence", "token", "embeddings"]) \ ... .setOutputCol("ner")
>>> ner_converter_name = NerConverterInternal()\ ... .setInputCols(["sentence","token","ner"])\ ... .setOutputCol("ner_chunk")
>>> nameChunkObfuscator = NameChunkObfuscatorApproach()\ ... .setInputCols("ner_chunk")\ ... .setOutputCol("replacement")\ ... .setRefFileFormat("csv")\ ... .setObfuscateRefFile("names_test.txt")\ ... .setRefSep("#")
>>> replacer_name = Replacer()\ ... .setInputCols("replacement","sentence")\ ... .setOutputCol("obfuscated_document_name")\ ... .setUseReplacement(True)
>>> nlpPipeline = Pipeline(stages=[ ... documentAssembler, ... tokenizer, ... word_embeddings, ... clinical_ner, ... ner_converter_name, ... nameChunkObfuscator, ... replacer_name, ... ])
>>> empty_data = spark.createDataFrame([[""]]).toDF("text") >>> model_chunck_obfuscator = nlpPipeline.fit(empty_data) >>> sample_text = '''John Davies is a 62 y.o. patient admitted. Mr. Davies was seen by attending physician Dr. Lorand and was scheduled for emergency assessment.''' >>> lmodel = LightPipeline(model_chunck_obfuscator) >>> res = lmodel.fullAnnotate(sample_text) >>> print("Original text. : ", res[0]['sentence'][0].result) >>> print("Obfuscated text : ", res[0]['obfuscated_document_name'][0].result) Original text. : John Davies is a 62 y.o. patient admitted. Mr. Davies was seen by attending physician Dr. Lorand and was scheduled for emergency assessment. Obfuscated text : Fitzpatrick is a <AGE> y.o. patient admitted. Mr. Bowman was seen by attending physician Dr. Acosta and was scheduled for emergency assessment.
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- mappingsColumn#
- name = 'Replacer'#
- noneValuesTo#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType#
- outputCol#
- placeHolder#
- placeHolderDelimiters#
- returnEntityMappings#
- skipLPInputColsValidation = True#
- staticEntityMappingsFallback#
- uid#
- useReplacement#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- getStaticEntityMappings()#
Gets the value of staticEntityMappings.
- getUseReplacement()#
Gets the value of useReplacement or its default value.
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMappingsColumn(value: str)#
This column maps the annotations to their corresponding chunks before the entities are replaced.
- Parameters:
value (str) – Column name for mapping
- setNoneValuesTo(value: str)#
- Determines the action to take when encountering a value of ‘NONE’ in the annotation.
This parameter can take one of the following three string values: - “entity”: Replaces ‘NONE’ values with the entity field extracted from the annotation, if available. If the entity field is not available, it uses the string “NONE” wrapped by the specified delimiters. - “place_holder”: Replaces ‘NONE’ values with a placeholder string wrapped by the specified delimiters. - “skip”: Retains the original annotation result or uses the target_text from the annotation’s metadata if available. - “prioritizestatic_entity”: If a static entity mapping is available for the entity type, it will use this values for mapping. Allowed Values: “entity”, “place_holder”, “skip” Error Handling: If an unrecognized value is provided, an IllegalArgumentException will be thrown.
- Parameters:
value (str) – Action to take when encountering a value of ‘NONE’ in the annotation.
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setPlaceHolder(value: str)#
- Specifies the placeholder string to use when noneValuesTo is set to “place_holder”.
This placeholder string will be wrapped by the delimiters if placeHolderDelimiters are defined.
- Parameters:
value (str) – The value to replace ‘NONE’ values with when noneValuesTo is set to ‘place_holder’
- setPlaceHolderDelimiters(value: list)#
- An array of two strings used as delimiters to wrap the placeholder or entity field
when noneValuesTo is set to “place_holder” or “entity”. The first element of the array is the prefix delimiter,and the second element is the suffix delimiter. Default is [‘<’, ‘>’]
- Parameters:
value (list) – An array of two strings used as delimiters to wrap the placeholder or entity field.
- setReturnEntityMappings(value: bool)#
With this property you select if you want to return mapping column
- Parameters:
value (bool) – True for returning mapping column, False otherwise.
- setStaticEntityMappings(value: dict)#
Static entity mappings. A dictionary with entity types as keys and replacement values as values.
- Parameters:
value (dict) – Static entity mappings.
- setStaticEntityMappingsFallback(value: str)#
Fallback option for static entity mappings. Allowed values: ‘entity’, ‘place_holder’, ‘skip’, ‘error’
- Parameters:
value (str) – Fallback option for static entity mappings.
- setUseReplacement(value: bool)#
Specifies whether to use the replacement field from the metadata if it exists.
- Parameters:
value (bool) – True for use replacement field in metadata, False otherwise.
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.