You can easily deploy any John Snow Labs models within the Snowpark Container Services Ecosystem via nlp.deploy_as_snowflake_udf()
Setup Snowflake Resources
To create a Role, Database, Warehouse, Schema, Compute Pool and Image Repository for John Snow Labs models you can run
nlp.snowflake_common_setup
which re-produces the Common Setup for Snowpark Container Services Tutorials automatically
with the same resource-names as in the tutorial.
You must have the snowflake-connector-python library installed beforehand installed
from johnsnowlabs import nlp
role_name, db_name, warehouse_name, schema_name, compute_pool_name, repo_url = nlp.snowflake_common_setup(
snowflake_user='my_snowflake_user',
snowflake_account='my_snowflake_account',
snowflake_password='my_snowflake_password',
)
This will create the following resources:
- role_name=
test_role
- schema_name=
data_schema
- repo_name=
tutorial_repository
- stage_name=
tutorial_stage
- db_name=
tutorial_db
- warehouse_name=
tutorial_warehouse
- compute_pool_name=
tutorial_compute_pool
You can specify a custom name for any resource by specifying it as a key-word argument.
role_name, db_name, warehouse_name, schema_name, compute_pool_name, repo_url = nlp.snowflake_common_setup(
snowflake_user='my_snowflake_user',
snowflake_account='my_snowflake_account',
snowflake_password='my_snowflake_password',
role_name='my_test_role',
schema_name='my_data_schema',
repo_name='my_tutorial_repository',
stage_name='my_tutorial_stage',
db_name='my_tutorial_db',
warehouse_name='my_tutorial_warehouse',
compute_pool_name='tutorial_compute_pool'
)
Deploy Model as Snowflake Container Services UDF
nlp.deploy_model_as_snowflake_udf()
will build, tag & push a John Snow Labs model server to your
Snowflake image repository and finally create a service & udf from the model and test it.
Role, Database, Warehouse, Schema, Compute Pool and Image Repository muss be created beforehand and passwed as arguments.
# Either run `nlp.snowflake_common_setup` or manually create&specify these resources
from johnsnowlabs import nlp
role_name, db_name, warehouse_name, schema_name, compute_pool_name, repo_url = ...
nlp.deploy_as_snowflake_udf(
nlu_ref='en.de_identify.clinical_pipeline',
snowflake_user='my_snowflake_user',
snowflake_account='my_snowflake_account',
snowflake_password='my_snowflake_password',
license_path='path/to/my/jsl_license.json',
repo_url=repo_url,
role_name=role_name,
database_name=db_name,
warehouse_name=warehouse_name,
schema_name=schema_name,
compute_pool_name=compute_pool_name,
)
nlp.deploy_model_as_snowflake_udf()
will build, tag & push a John Snow Labs model server to your
Snowflake image repository and finally create a service & udf from the model and test it.
Role, Database, Warehouse, Schema, Compute Pool and Image Repository muss be created beforehand and passwed as arguments.
# Either run `nlp.snowflake_common_setup` or manually create&specify these resources
from johnsnowlabs import nlp
role_name, db_name, warehouse_name, schema_name, compute_pool_name, repo_url = ...
nlp.deploy_as_snowflake_udf(
nlu_ref='en.de_identify.clinical_pipeline',
snowflake_user='my_snowflake_user',
snowflake_account='my_snowflake_account',
snowflake_password='my_snowflake_password',
license_path='path/to/my/jsl_license.json',
repo_url=repo_url,
role_name=role_name,
database_name=db_name,
warehouse_name=warehouse_name,
schema_name=schema_name,
compute_pool_name=compute_pool_name,
)
You can also optionally specify the name of the created service & UDF
# Either run `nlp.snowflake_common_setup` or manually create&specify these resources
from johnsnowlabs import nlp
role_name, db_name, warehouse_name, schema_name, compute_pool_name, repo_url = ...
nlp.deploy_as_snowflake_udf(
nlu_ref='en.de_identify.clinical_pipeline',
snowflake_user='my_snowflake_user',
snowflake_account='my_snowflake_account',
snowflake_password='my_snowflake_password',
license_path='path/to/my/jsl_license.json',
repo_url=repo_url,
role_name=role_name,
database_name=db_name,
warehouse_name=warehouse_name,
schema_name=schema_name,
compute_pool_name=compute_pool_name,
udf_name='my_udf',
service_name='my_service'
)
You can now use the en_de_identify_clinical_pipeline_udf()
function within your Snowflake SQL and Python Worksheets
when using the created role, database, warehouse, schema.
You can run the following commands in Snowflake to get he status of the service and query the UDF
-- Set context
USE ROLE test_role;
USE DATABASE tutorial_db;
USE WAREHOUSE tutorial_warehouse;
USE SCHEMA data_schema;
-- Describe UDF
DESCRIBE FUNCTION JSL_RESOLVE_MEDICATION(varchar);
-- Get service status of UDF backend
SELECT SYSTEM$GET_SERVICE_STATUS('en_de_identify_clinical_pipeline_service');
-- Describe service
DESCRIBE SERVICE tokenize_servicedelthi123s;
-- Get Logs of container service
CALL SYSTEM$GET_SERVICE_LOGS('en_de_identify_clinical_pipeline_service', '0', 'jsl-container', 1000);
-- Call UDF
SELECT en_de_identify_clinical_pipeline_udf('The patient was prescribed Amlodopine Vallarta 10-320mg, Eviplera. The other patient is given Lescol 40 MG and Everolimus 1.5 mg tablet.');
Streamlit Example with Snowpark services
Once you created an UDF in Snowflake you can access it within Streamlit Apps. Make sure to select the same resources to host your Streamlit app as used for hosting the UDF
This is a small example of a simple streamlit app you can now build:
- Go to the Streamlit Section in
Projects
within you Snowflake account - In the bottom left click on your username and then on switch role and select the role we just created. The default value is
test_role
- In the side-bar, click on Streamlit and then on the
+ Streamlit App
button. Specify a Database, Schema and Warehouse. The defaults areTUTORIAL_DB
,DATA_SCHEMA
,TUTORIAL_WAREHOUSE
. Copy and paste the following script into your streamlit app and run itimport streamlit as st from snowflake.snowpark.context import get_active_session session = get_active_session() data = st.text_area("Type Your Text", value='Sample text', height=200) udf_response = session.sql(f"""SELECT en_de_identify_clinical_pipeline_service('{data}')""",) st.write(udf_response.collect()[0].as_dict())
For a more advanced streamlit example, see here