t

com.johnsnowlabs.nlp.annotators.ner

MedicalNerParams

trait MedicalNerParams extends Params with HasFeatures

Linear Supertypes
HasFeatures, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. MedicalNerParams
  2. HasFeatures
  3. Params
  4. Serializable
  5. Serializable
  6. Identifiable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def copy(extra: ParamMap): Params
    Definition Classes
    Params
  2. abstract val uid: String
    Definition Classes
    Identifiable

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  10. final def clear(param: Param[_]): MedicalNerParams.this.type
    Definition Classes
    Params
  11. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  12. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  13. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  14. val datasetInfo: Param[String]

    Descriptive information about the dataset being used.

  15. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  16. val dropout: FloatParam

    Dropout coefficient, by default 0.5.

    Dropout coefficient, by default 0.5.

    The coefficient of the dropout layer. The value should be between 0.0 and 1.0. Internally, it is used by Tensorflow as: rate = 1.0 - dropout when adding a dropout layer on top of the recurrent layers.

  17. val earlyStoppingCriterion: FloatParam

    If set, this param specifies the criterion to stop training if performance is not improving.

    If set, this param specifies the criterion to stop training if performance is not improving.

    Default value is 0 which is means that early stopping is not used.

    The criterion is set to F1-score if the validationSplit is greater than 0.0 (F1-socre on validation set) or testDataset is defined (F1-score on test set), otherwise it is set to model loss. The priority is as follows: - If testDataset is defined, then the criterion is set to F1-score on test set. - If validationSplit is greater than 0.0, then the criterion is set to F1-score on validation set. - Otherwise, the criterion is set to model loss.

    Note that while the F1-score ranges from 0.0 to 1.0, the loss ranges from 0.0 to infinity. So, depending on which case you are in, the value you use for the criterion can be very different. For example, if validationSplit is 0.1, then a criterion of 0.01 means that if the F1-score on the validation set difference from last epoch is greater than 0.01, then the training should stop. However, if there is not validation or test set defined, then a criterion of 2.0 means that if the loss difference between the last epoch and the current one is less than 2.0, then training should stop.

    See also

    earlyStoppingPatience.

  18. val earlyStoppingPatience: IntParam

    Number of epochs to wait before early stopping if no improvement, by default 5.

    Number of epochs to wait before early stopping if no improvement, by default 5.

    Given the earlyStoppingCriterion, if the performance does not improve for the given number of epochs, then the training will stop. If the value is 0, then early stopping will occurs as soon as the criterion is met (no patience).

    See also

    earlyStoppingCriterion.

  19. val enableMemoryOptimizer: BooleanParam

    Whether to optimize for large datasets or not.

    Whether to optimize for large datasets or not. Enabling this option can slow down training.

    In practice, if set to true the training will iterate over the spark Data Frame and retrieve the batches from the Data Frame iterator. This can be slower than the default option as it has to collect the batches on evey bach for every epoch, but it can be useful if the dataset is too large to fit in memory.

    It controls if we want the features collected and generated at once and then feed into the network batch by batch (False) or collected and generated by batch and then feed into the network in batches (True) .

    If the training data can fit to memory, then it is recommended to set this option to False (default value).

  20. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  21. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  22. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  23. def explainParams(): String
    Definition Classes
    Params
  24. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  25. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  26. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  27. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  28. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  29. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  30. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  31. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  32. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  33. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  34. def getConfigProtoBytes: Option[Array[Byte]]

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  35. def getDatasetInfo: String

    get descriptive information about the dataset being used

  36. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  37. def getDropout: Float

    Dropout coefficient

  38. def getEarlyStoppingCriterion: Float

    Early stopping criterion

  39. def getEarlyStoppingPatience: Int

    Early stopping patience

  40. def getEnableMemoryOptimizer: Boolean

    Whether to optimize for large datasets or not.

    Whether to optimize for large datasets or not. Enabling this option can slow down training.

  41. def getIncludeAllConfidenceScores: Boolean

    whether to include all confidence scores in annotation metadata or just the score of the predicted tag

  42. def getIncludeConfidence: Boolean

    whether to include confidence scores in annotation metadata

  43. def getLr: Float

    Learning Rate

  44. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  45. def getOverrideExistingTags: Boolean

    Whether to override already learned tags when using a pretrained model to initialize the new model.

  46. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  47. def getPo: Float

    Learning rate decay coefficient.

    Learning rate decay coefficient. Real Learning Rage = lr / (1 + po * epoch)

  48. def getRandomValidationSplitPerEpoch: Boolean

    Checks if a random validation split is done after each epoch or at the beginning of training only.

  49. def getSentenceTokenIndex: Boolean

    whether to include the token index for each sentence in annotation metadata.

  50. def getUseBestModel: Boolean

    useBestModel

  51. def getUseContrib: Boolean

    Whether to use contrib LSTM Cells.

    Whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy.

  52. val graphFile: Param[String]

    Path that contains the external graph file.

    Path that contains the external graph file.

    When specified, the provided file will be used, and no graph search will happen. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

  53. val graphFolder: Param[String]

    Folder path that contains external graph files.

    Folder path that contains external graph files.

    The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    When instantiating the Tensorflow model, uses this folder to search for the adequate Tensorflow graph. The search is done using the name of the .pb file, which should be in this format: blstn_{ntags}_{embedding_dim}_{lstm_size}_{nchars}.pb.

    Then, the search follows these rules: - Embedding dimension should be exactly the same as the one used to train the model. - Number of unique tags should be greater than or equal to the number of unique tags in the training data. - Number of unique chars should be greater than or equal to the number of unique chars in the training data.

    The returned file will be the first one that satisfies all the conditions.

    If the name of the file is ill-formed, errors will occur during training.

  54. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  55. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  56. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  57. val includeAllConfidenceScores: BooleanParam

    Whether to include confidence scores for all tags in annotation metadata or just the score of the predicted tag, by default False.

    Whether to include confidence scores for all tags in annotation metadata or just the score of the predicted tag, by default False.

    Needs the includeConfidence parameter to be set to true.

    Enabling this may slow down the inference speed.

  58. val includeConfidence: BooleanParam

    Whether to include confidence scores in annotation metadata, by default False.

    Whether to include confidence scores in annotation metadata, by default False.

    Setting this parameter to True will add the confidence score to the metadata of the NAMED_ENTITY annotation. In addition, if includeAllConfidenceScores is set to true, then the confidence scores of all the tags will be added to the metadata, otherwise only for the predicted tag (the one with maximum score).

  59. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  60. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  61. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  62. val logPrefix: Param[String]

    A prefix that will be appended to every log, default value is empty.

  63. val lr: FloatParam

    Learning Rate, by default 0.001.

  64. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  65. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  66. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  67. val overrideExistingTags: BooleanParam

    Controls whether to override already learned tags when using a pretrained model to initialize the new model.

    Controls whether to override already learned tags when using a pretrained model to initialize the new model. A value of true will override existing tags.

  68. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  69. val po: FloatParam

    Learning rate decay coefficient (time-based).

    Learning rate decay coefficient (time-based).

    This is used to calculate the decayed learning rate at each step as: lr = lr / (1 + po * epoch), meaning that the value of the learning rate is updated on each epoch. By default 0.005.

  70. val pretrainedModelPath: Param[String]

    Path to an already trained MedicalNerModel.

    Path to an already trained MedicalNerModel.

    This pretrained model will be used as a starting point for training the new one. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

  71. val randomValidationSplitPerEpoch: BooleanParam

    Do a random validation split after each epoch rather than at the beginning of training only.

  72. val sentenceTokenIndex: BooleanParam

    whether to include the token index for each sentence in annotation metadata, by default false.

    whether to include the token index for each sentence in annotation metadata, by default false. If the value is true, the process might be slowed down.

  73. def set[T](feature: StructFeature[T], value: T): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  74. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  75. def set[T](feature: SetFeature[T], value: Set[T]): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  76. def set[T](feature: ArrayFeature[T], value: Array[T]): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  77. final def set(paramPair: ParamPair[_]): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    Params
  78. final def set(param: String, value: Any): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    Params
  79. final def set[T](param: Param[T], value: T): MedicalNerParams.this.type
    Definition Classes
    Params
  80. def setConfigProtoBytes(bytes: Array[Int]): MedicalNerParams.this.type

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  81. def setDatasetInfo(value: String): MedicalNerParams.this.type

    set descriptive information about the dataset being used

  82. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  83. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  84. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  85. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  86. final def setDefault(paramPairs: ParamPair[_]*): MedicalNerParams.this.type
    Attributes
    protected
    Definition Classes
    Params
  87. final def setDefault[T](param: Param[T], value: T): MedicalNerParams.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  88. def setDropout(dropout: Float): MedicalNerParams.this.type

    Dropout coefficient

  89. def setEarlyStoppingCriterion(value: Float): MedicalNerParams.this.type

  90. def setEarlyStoppingPatience(value: Int): MedicalNerParams.this.type

  91. def setEnableMemoryOptimizer(value: Boolean): MedicalNerParams.this.type
  92. def setGraphFile(path: String): MedicalNerParams.this.type

    Folder path that contain external graph files

  93. def setGraphFolder(path: String): MedicalNerParams.this.type

    Folder path that contain external graph files

  94. def setIncludeAllConfidenceScores(value: Boolean): MedicalNerParams.this.type

    Whether to include confidence scores in annotation metadata

  95. def setIncludeConfidence(value: Boolean): MedicalNerParams.this.type

    Whether to include confidence scores for all tags rather than just for the predicted one

  96. def setLogPrefix(value: String): MedicalNerParams.this.type

    a string prefix to be included in the logs

  97. def setLr(lr: Float): MedicalNerParams.this.type

    Learning Rate

  98. def setOverrideExistingTags(value: Boolean): MedicalNerParams.this.type

    Controls whether to override already learned tags when using a pretrained model to initialize the new model.

    Controls whether to override already learned tags when using a pretrained model to initialize the new model. A value of true will override existing tags.

  99. def setPo(po: Float): MedicalNerParams.this.type

    Learning rate decay coefficient.

    Learning rate decay coefficient. Real Learning Rage = lr / (1 + po * epoch)

  100. def setPretrainedModelPath(path: String): MedicalNerParams.this.type

    Set the location of an already trained MedicalNerModel, which is used as a starting point for training the new model.

  101. def setRandomValidationSplitPerEpoch(value: Boolean): MedicalNerParams.this.type

    Do a random validation split after each epoch rather than at the beginning of training only.

  102. def setSentenceTokenIndex(value: Boolean): MedicalNerParams.this.type

    whether to include the token index for each sentence in annotation metadata, by default false.

    whether to include the token index for each sentence in annotation metadata, by default false. If the value is true, the process might be slowed down.

  103. def setTagsMapping(mapping: Map[String, String]): MedicalNerParams.this.type

    A map specifying how old tags are mapped to new ones.

    A map specifying how old tags are mapped to new ones. Maps are specified either using a list of comma separated strings, e.g. ("OLDTAG1,NEWTAG1", "OLDTAG2,NEWTAG2", ...) or by a Map data structure.

  104. def setTagsMapping(mapping: ArrayList[String]): MedicalNerParams.this.type
  105. def setTagsMapping(mapping: Array[String]): MedicalNerParams.this.type

    A map specifying how old tags are mapped to new ones.

    A map specifying how old tags are mapped to new ones. Maps are specified either using a list of comma separated strings, e.g. ("OLDTAG1,NEWTAG1", "OLDTAG2,NEWTAG2", ...) or by a Map data structure. It only works if setOverrideExistingTags is false.

  106. def setUseBestModel(value: Boolean): MedicalNerParams.this.type

  107. def setUseContrib(value: Boolean): MedicalNerParams.this.type

    Whether to use contrib LSTM Cells.

    Whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy.

  108. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  109. val tagsMapping: MapFeature[String, String]

    A map specifying how old tags are mapped to new ones.

    A map specifying how old tags are mapped to new ones.

    It only works if overrideExistingTags is set to false.

  110. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  111. val useBestModel: BooleanParam

    Whether to restore and use the model from the epoch that has achieved the best performance at the end of the training.

    Whether to restore and use the model from the epoch that has achieved the best performance at the end of the training.

    By default false (keep the model from the last trained epoch).

    The best model depends on the earlyStoppingCriterion, which can be F1-score on test/validation dataset or the value of loss.

  112. val useContrib: BooleanParam

    whether to use contrib LSTM Cells.

    whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy. By default true.

  113. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  114. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  115. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from HasFeatures

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

getParam

param

setParam

Ungrouped