object FinanceNerApproach extends MedicalNerApproach

Linear Supertypes
MedicalNerApproach, CheckLicense, EvaluationDLParams, ParamsAndFeaturesWritable, Logging, NerApproach[MedicalNerApproach], MedicalNerParams, HasFeatures, AnnotatorApproach[MedicalNerModel], CanBeLazy, DefaultParamsWritable, MLWritable, HasOutputAnnotatorType, HasOutputAnnotationCol, HasInputAnnotationCols, Estimator[MedicalNerModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. FinanceNerApproach
  2. MedicalNerApproach
  3. CheckLicense
  4. EvaluationDLParams
  5. ParamsAndFeaturesWritable
  6. Logging
  7. NerApproach
  8. MedicalNerParams
  9. HasFeatures
  10. AnnotatorApproach
  11. CanBeLazy
  12. DefaultParamsWritable
  13. MLWritable
  14. HasOutputAnnotatorType
  15. HasOutputAnnotationCol
  16. HasInputAnnotationCols
  17. Estimator
  18. PipelineStage
  19. Logging
  20. Params
  21. Serializable
  22. Serializable
  23. Identifiable
  24. AnyRef
  25. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): MedicalNerModel
    Attributes
    protected
    Definition Classes
    AnnotatorApproach
  10. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  11. val batchSize: IntParam

    Batch size, by default 8.

    Batch size, by default 8.

    Definition Classes
    MedicalNerApproach
  12. def beforeTraining(spark: SparkSession): Unit
    Definition Classes
    MedicalNerApproach → AnnotatorApproach
  13. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  14. def checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String], metadata: Option[Map[String, Value]]): Unit
    Definition Classes
    CheckLicense
  15. def checkValidScope(scope: String): Unit
    Definition Classes
    CheckLicense
  16. def checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean, metadata: Option[Map[String, Value]]): Unit
    Definition Classes
    CheckLicense
  17. def checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean, metadata: Option[Map[String, Value]]): Unit
    Definition Classes
    CheckLicense
  18. final def clear(param: Param[_]): FinanceNerApproach.this.type
    Definition Classes
    Params
  19. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  20. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    MedicalNerParams
  21. final def copy(extra: ParamMap): Estimator[MedicalNerModel]
    Definition Classes
    AnnotatorApproach → Estimator → PipelineStage → Params
  22. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  23. val datasetInfo: Param[String]

    Descriptive information about the dataset being used.

    Descriptive information about the dataset being used.

    Definition Classes
    MedicalNerParams
  24. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  25. val description: String

    Trains Tensorflow based Char-CNN-BLSTM model

    Trains Tensorflow based Char-CNN-BLSTM model

    Definition Classes
    MedicalNerApproach → AnnotatorApproach
  26. val dropout: FloatParam

    Dropout coefficient, by default 0.5.

    Dropout coefficient, by default 0.5.

    The coefficient of the dropout layer. The value should be between 0.0 and 1.0. Internally, it is used by Tensorflow as: rate = 1.0 - dropout when adding a dropout layer on top of the recurrent layers.

    Definition Classes
    MedicalNerParams
  27. val earlyStoppingCriterion: FloatParam

    If set, this param specifies the criterion to stop training if performance is not improving.

    If set, this param specifies the criterion to stop training if performance is not improving.

    Default value is 0 which is means that early stopping is not used.

    The criterion is set to F1-score if the validationSplit is greater than 0.0 (F1-socre on validation set) or testDataset is defined (F1-score on test set), otherwise it is set to model loss. The priority is as follows: - If testDataset is defined, then the criterion is set to F1-score on test set. - If validationSplit is greater than 0.0, then the criterion is set to F1-score on validation set. - Otherwise, the criterion is set to model loss.

    Note that while the F1-score ranges from 0.0 to 1.0, the loss ranges from 0.0 to infinity. So, depending on which case you are in, the value you use for the criterion can be very different. For example, if validationSplit is 0.1, then a criterion of 0.01 means that if the F1-score on the validation set difference from last epoch is greater than 0.01, then the training should stop. However, if there is not validation or test set defined, then a criterion of 2.0 means that if the loss difference between the last epoch and the current one is less than 2.0, then training should stop.

    Definition Classes
    MedicalNerParams
    See also

    earlyStoppingPatience.

  28. val earlyStoppingPatience: IntParam

    Number of epochs to wait before early stopping if no improvement, by default 5.

    Number of epochs to wait before early stopping if no improvement, by default 5.

    Given the earlyStoppingCriterion, if the performance does not improve for the given number of epochs, then the training will stop. If the value is 0, then early stopping will occurs as soon as the criterion is met (no patience).

    Definition Classes
    MedicalNerParams
    See also

    earlyStoppingCriterion.

  29. val enableMemoryOptimizer: BooleanParam

    Whether to optimize for large datasets or not.

    Whether to optimize for large datasets or not. Enabling this option can slow down training.

    In practice, if set to true the training will iterate over the spark Data Frame and retrieve the batches from the Data Frame iterator. This can be slower than the default option as it has to collect the batches on evey bach for every epoch, but it can be useful if the dataset is too large to fit in memory.

    It controls if we want the features collected and generated at once and then feed into the network batch by batch (False) or collected and generated by batch and then feed into the network in batches (True) .

    If the training data can fit to memory, then it is recommended to set this option to False (default value).

    Definition Classes
    MedicalNerParams
  30. val enableOutputLogs: BooleanParam
    Definition Classes
    EvaluationDLParams
  31. val entities: StringArrayParam
    Definition Classes
    NerApproach
  32. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  33. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  34. val evaluationLogExtended: BooleanParam
    Definition Classes
    EvaluationDLParams
  35. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  36. def explainParams(): String
    Definition Classes
    Params
  37. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  38. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  39. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  40. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  41. final def fit(dataset: Dataset[_]): MedicalNerModel
    Definition Classes
    AnnotatorApproach → Estimator
  42. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[MedicalNerModel]
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  43. def fit(dataset: Dataset[_], paramMap: ParamMap): MedicalNerModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  44. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): MedicalNerModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  45. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  46. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  47. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  48. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  49. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  50. def getBatchSize: Int

    Batch size

    Batch size

    Definition Classes
    MedicalNerApproach
  51. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  52. def getConfigProtoBytes: Option[Array[Byte]]

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    MedicalNerParams
  53. def getDatasetInfo: String

    get descriptive information about the dataset being used

    get descriptive information about the dataset being used

    Definition Classes
    MedicalNerParams
  54. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  55. def getDropout: Float

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    MedicalNerParams
  56. def getEarlyStoppingCriterion: Float

    Early stopping criterion

    Early stopping criterion

    Definition Classes
    MedicalNerParams
  57. def getEarlyStoppingPatience: Int

    Early stopping patience

    Early stopping patience

    Definition Classes
    MedicalNerParams
  58. def getEnableMemoryOptimizer: Boolean

    Whether to optimize for large datasets or not.

    Whether to optimize for large datasets or not. Enabling this option can slow down training.

    Definition Classes
    MedicalNerParams
  59. def getEnableOutputLogs: Boolean
    Definition Classes
    EvaluationDLParams
  60. def getIncludeAllConfidenceScores: Boolean

    whether to include all confidence scores in annotation metadata or just the score of the predicted tag

    whether to include all confidence scores in annotation metadata or just the score of the predicted tag

    Definition Classes
    MedicalNerParams
  61. def getIncludeConfidence: Boolean

    whether to include confidence scores in annotation metadata

    whether to include confidence scores in annotation metadata

    Definition Classes
    MedicalNerParams
  62. def getInputCols: Array[String]
    Definition Classes
    HasInputAnnotationCols
  63. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  64. def getLogName: String
    Definition Classes
    MedicalNerApproach → Logging
  65. def getLr: Float

    Learning Rate

    Learning Rate

    Definition Classes
    MedicalNerParams
  66. def getMaxEpochs: Int
    Definition Classes
    NerApproach
  67. def getMinEpochs: Int
    Definition Classes
    NerApproach
  68. def getOptimizePartitioning: Boolean
    Definition Classes
    MedicalNerApproach
  69. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  70. final def getOutputCol: String
    Definition Classes
    HasOutputAnnotationCol
  71. def getOutputLogsPath: String
    Definition Classes
    EvaluationDLParams
  72. def getOverrideExistingTags: Boolean

    Whether to override already learned tags when using a pretrained model to initialize the new model.

    Whether to override already learned tags when using a pretrained model to initialize the new model.

    Definition Classes
    MedicalNerParams
  73. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  74. def getPo: Float

    Learning rate decay coefficient.

    Learning rate decay coefficient. Real Learning Rage = lr / (1 + po * epoch)

    Definition Classes
    MedicalNerParams
  75. def getPrefetchBatches: Int
    Definition Classes
    MedicalNerApproach
  76. def getRandomSeed: Int
    Definition Classes
    NerApproach
  77. def getRandomValidationSplitPerEpoch: Boolean

    Checks if a random validation split is done after each epoch or at the beginning of training only.

    Checks if a random validation split is done after each epoch or at the beginning of training only.

    Definition Classes
    MedicalNerParams
  78. def getSentenceTokenIndex: Boolean

    whether to include the token index for each sentence in annotation metadata.

    whether to include the token index for each sentence in annotation metadata.

    Definition Classes
    MedicalNerParams
  79. def getUseBestModel: Boolean

    useBestModel

    useBestModel

    Definition Classes
    MedicalNerParams
  80. def getUseContrib: Boolean

    Whether to use contrib LSTM Cells.

    Whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy.

    Definition Classes
    MedicalNerParams
  81. def getValidationSplit: Float
    Definition Classes
    EvaluationDLParams
  82. val graphFile: Param[String]

    Path that contains the external graph file.

    Path that contains the external graph file.

    When specified, the provided file will be used, and no graph search will happen. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    Definition Classes
    MedicalNerParams
  83. val graphFolder: Param[String]

    Folder path that contains external graph files.

    Folder path that contains external graph files.

    The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    When instantiating the Tensorflow model, uses this folder to search for the adequate Tensorflow graph. The search is done using the name of the .pb file, which should be in this format: blstn_{ntags}_{embedding_dim}_{lstm_size}_{nchars}.pb.

    Then, the search follows these rules: - Embedding dimension should be exactly the same as the one used to train the model. - Number of unique tags should be greater than or equal to the number of unique tags in the training data. - Number of unique chars should be greater than or equal to the number of unique chars in the training data.

    The returned file will be the first one that satisfies all the conditions.

    If the name of the file is ill-formed, errors will occur during training.

    Definition Classes
    MedicalNerParams
  84. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  85. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  86. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  87. val includeAllConfidenceScores: BooleanParam

    Whether to include confidence scores for all tags in annotation metadata or just the score of the predicted tag, by default False.

    Whether to include confidence scores for all tags in annotation metadata or just the score of the predicted tag, by default False.

    Needs the includeConfidence parameter to be set to true.

    Enabling this may slow down the inference speed.

    Definition Classes
    MedicalNerParams
  88. val includeConfidence: BooleanParam

    Whether to include confidence scores in annotation metadata, by default False.

    Whether to include confidence scores in annotation metadata, by default False.

    Setting this parameter to True will add the confidence score to the metadata of the NAMED_ENTITY annotation. In addition, if includeAllConfidenceScores is set to true, then the confidence scores of all the tags will be added to the metadata, otherwise only for the predicted tag (the one with maximum score).

    Definition Classes
    MedicalNerParams
  89. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  90. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  91. val inputAnnotatorTypes: Array[String]

    Input annotator types : DOCUMENT, TOKEN, WORD_EMBEDDINGS

    Input annotator types : DOCUMENT, TOKEN, WORD_EMBEDDINGS

    Definition Classes
    MedicalNerApproach → HasInputAnnotationCols
  92. final val inputCols: StringArrayParam
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  93. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  94. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  95. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  96. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  97. val labelColumn: Param[String]
    Definition Classes
    NerApproach
  98. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  99. def log(value: ⇒ String, minLevel: Level): Unit
    Attributes
    protected
    Definition Classes
    Logging
  100. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  101. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  102. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  103. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  104. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  105. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  106. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  107. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  108. val logPrefix: Param[String]

    A prefix that will be appended to every log, default value is empty.

    A prefix that will be appended to every log, default value is empty.

    Definition Classes
    MedicalNerParams
  109. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  110. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  111. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  112. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  113. val logger: Logger
    Attributes
    protected
    Definition Classes
    Logging
  114. val lr: FloatParam

    Learning Rate, by default 0.001.

    Learning Rate, by default 0.001.

    Definition Classes
    MedicalNerParams
  115. val maxEpochs: IntParam
    Definition Classes
    NerApproach
  116. val minEpochs: IntParam
    Definition Classes
    NerApproach
  117. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  118. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  119. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  120. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  121. def onTrained(model: MedicalNerModel, spark: SparkSession): Unit
    Definition Classes
    AnnotatorApproach
  122. def onWrite(path: String, spark: SparkSession): Unit
    Attributes
    protected
    Definition Classes
    ParamsAndFeaturesWritable
  123. val optimizePartitioning: BooleanParam

    Whether to repartition the dataset before training for optimal performance.

    Whether to repartition the dataset before training for optimal performance. Has no effect if memory optimizer is disabled.

    Definition Classes
    MedicalNerApproach
  124. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  125. val outputAnnotatorType: String

    Input annotator types : NAMED_ENTITY

    Input annotator types : NAMED_ENTITY

    Definition Classes
    MedicalNerApproach → HasOutputAnnotatorType
  126. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  127. def outputLog(value: ⇒ String, uuid: String, shouldLog: Boolean, outputLogsPath: String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  128. val outputLogsPath: Param[String]
    Definition Classes
    EvaluationDLParams
  129. val overrideExistingTags: BooleanParam

    Controls whether to override already learned tags when using a pretrained model to initialize the new model.

    Controls whether to override already learned tags when using a pretrained model to initialize the new model. A value of true will override existing tags.

    Definition Classes
    MedicalNerParams
  130. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  131. val po: FloatParam

    Learning rate decay coefficient (time-based).

    Learning rate decay coefficient (time-based).

    This is used to calculate the decayed learning rate at each step as: lr = lr / (1 + po * epoch), meaning that the value of the learning rate is updated on each epoch. By default 0.005.

    Definition Classes
    MedicalNerParams
  132. val prefetchBatches: IntParam
    Definition Classes
    MedicalNerApproach
  133. val pretrainedModelPath: Param[String]

    Path to an already trained MedicalNerModel.

    Path to an already trained MedicalNerModel.

    This pretrained model will be used as a starting point for training the new one. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    Definition Classes
    MedicalNerParams
  134. val randomSeed: IntParam
    Definition Classes
    NerApproach
  135. val randomValidationSplitPerEpoch: BooleanParam

    Do a random validation split after each epoch rather than at the beginning of training only.

    Do a random validation split after each epoch rather than at the beginning of training only.

    Definition Classes
    MedicalNerParams
  136. def resumeTrainingFromModel(model: MedicalNerModel): FinanceNerApproach.this.type
    Definition Classes
    MedicalNerApproach
  137. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  138. val sentenceTokenIndex: BooleanParam

    whether to include the token index for each sentence in annotation metadata, by default false.

    whether to include the token index for each sentence in annotation metadata, by default false. If the value is true, the process might be slowed down.

    Definition Classes
    MedicalNerParams
  139. def set[T](feature: StructFeature[T], value: T): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  140. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  141. def set[T](feature: SetFeature[T], value: Set[T]): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  142. def set[T](feature: ArrayFeature[T], value: Array[T]): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  143. final def set(paramPair: ParamPair[_]): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  144. final def set(param: String, value: Any): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  145. final def set[T](param: Param[T], value: T): FinanceNerApproach.this.type
    Definition Classes
    Params
  146. def setBatchSize(batch: Int): FinanceNerApproach.this.type

    Batch size

    Batch size

    Definition Classes
    MedicalNerApproach
  147. def setConfigProtoBytes(bytes: Array[Int]): FinanceNerApproach.this.type

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    MedicalNerParams
  148. def setDatasetInfo(value: String): FinanceNerApproach.this.type

    set descriptive information about the dataset being used

    set descriptive information about the dataset being used

    Definition Classes
    MedicalNerParams
  149. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  150. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  151. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  152. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  153. final def setDefault(paramPairs: ParamPair[_]*): FinanceNerApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  154. final def setDefault[T](param: Param[T], value: T): FinanceNerApproach.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  155. def setDropout(dropout: Float): FinanceNerApproach.this.type

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    MedicalNerParams
  156. def setEarlyStoppingCriterion(value: Float): FinanceNerApproach.this.type

    Definition Classes
    MedicalNerParams
  157. def setEarlyStoppingPatience(value: Int): FinanceNerApproach.this.type

    Definition Classes
    MedicalNerParams
  158. def setEnableMemoryOptimizer(value: Boolean): FinanceNerApproach.this.type
    Definition Classes
    MedicalNerParams
  159. def setEnableOutputLogs(enableOutputLogs: Boolean): FinanceNerApproach.this.type
    Definition Classes
    EvaluationDLParams
  160. def setEntities(tags: Array[String]): MedicalNerApproach
    Definition Classes
    NerApproach
  161. def setEvaluationLogExtended(evaluationLogExtended: Boolean): FinanceNerApproach.this.type
    Definition Classes
    EvaluationDLParams
  162. def setGraphFile(path: String): FinanceNerApproach.this.type

    Folder path that contain external graph files

    Folder path that contain external graph files

    Definition Classes
    MedicalNerParams
  163. def setGraphFolder(path: String): FinanceNerApproach.this.type

    Folder path that contain external graph files

    Folder path that contain external graph files

    Definition Classes
    MedicalNerParams
  164. def setIncludeAllConfidenceScores(value: Boolean): FinanceNerApproach.this.type

    Whether to include confidence scores in annotation metadata

    Whether to include confidence scores in annotation metadata

    Definition Classes
    MedicalNerParams
  165. def setIncludeConfidence(value: Boolean): FinanceNerApproach.this.type

    Whether to include confidence scores for all tags rather than just for the predicted one

    Whether to include confidence scores for all tags rather than just for the predicted one

    Definition Classes
    MedicalNerParams
  166. final def setInputCols(value: String*): FinanceNerApproach.this.type
    Definition Classes
    HasInputAnnotationCols
  167. def setInputCols(value: Array[String]): FinanceNerApproach.this.type
    Definition Classes
    HasInputAnnotationCols
  168. def setLabelColumn(column: String): MedicalNerApproach
    Definition Classes
    NerApproach
  169. def setLazyAnnotator(value: Boolean): FinanceNerApproach.this.type
    Definition Classes
    CanBeLazy
  170. def setLogPrefix(value: String): FinanceNerApproach.this.type

    a string prefix to be included in the logs

    a string prefix to be included in the logs

    Definition Classes
    MedicalNerParams
  171. def setLr(lr: Float): FinanceNerApproach.this.type

    Learning Rate

    Learning Rate

    Definition Classes
    MedicalNerParams
  172. def setMaxEpochs(epochs: Int): MedicalNerApproach
    Definition Classes
    NerApproach
  173. def setMinEpochs(epochs: Int): MedicalNerApproach
    Definition Classes
    NerApproach
  174. def setOptimizePartitioning(value: Boolean): FinanceNerApproach.this.type

    Sets whether to repartition the dataset before training for optimal performance.

    Sets whether to repartition the dataset before training for optimal performance. Has no effect if memory optimizer is disabled.

    Definition Classes
    MedicalNerApproach
  175. final def setOutputCol(value: String): FinanceNerApproach.this.type
    Definition Classes
    HasOutputAnnotationCol
  176. def setOutputLogsPath(path: String): FinanceNerApproach.this.type
    Definition Classes
    EvaluationDLParams
  177. def setOverrideExistingTags(value: Boolean): FinanceNerApproach.this.type

    Controls whether to override already learned tags when using a pretrained model to initialize the new model.

    Controls whether to override already learned tags when using a pretrained model to initialize the new model. A value of true will override existing tags.

    Definition Classes
    MedicalNerParams
  178. def setPo(po: Float): FinanceNerApproach.this.type

    Learning rate decay coefficient.

    Learning rate decay coefficient. Real Learning Rage = lr / (1 + po * epoch)

    Definition Classes
    MedicalNerParams
  179. def setPrefetchBatches(value: Int): FinanceNerApproach.this.type

    Sets number of batches to prefetch while training using memory optimizer.

    Sets number of batches to prefetch while training using memory optimizer. Has no effect if memory optimizer is disabled.

    Definition Classes
    MedicalNerApproach
  180. def setPretrainedModelPath(path: String): FinanceNerApproach.this.type

    Set the location of an already trained MedicalNerModel, which is used as a starting point for training the new model.

    Set the location of an already trained MedicalNerModel, which is used as a starting point for training the new model.

    Definition Classes
    MedicalNerParams
  181. def setRandomSeed(seed: Int): MedicalNerApproach
    Definition Classes
    NerApproach
  182. def setRandomValidationSplitPerEpoch(value: Boolean): FinanceNerApproach.this.type

    Do a random validation split after each epoch rather than at the beginning of training only.

    Do a random validation split after each epoch rather than at the beginning of training only.

    Definition Classes
    MedicalNerParams
  183. def setSentenceTokenIndex(value: Boolean): FinanceNerApproach.this.type

    whether to include the token index for each sentence in annotation metadata, by default false.

    whether to include the token index for each sentence in annotation metadata, by default false. If the value is true, the process might be slowed down.

    Definition Classes
    MedicalNerParams
  184. def setTagsMapping(mapping: Map[String, String]): FinanceNerApproach.this.type

    A map specifying how old tags are mapped to new ones.

    A map specifying how old tags are mapped to new ones. Maps are specified either using a list of comma separated strings, e.g. ("OLDTAG1,NEWTAG1", "OLDTAG2,NEWTAG2", ...) or by a Map data structure.

    Definition Classes
    MedicalNerParams
  185. def setTagsMapping(mapping: ArrayList[String]): FinanceNerApproach.this.type
    Definition Classes
    MedicalNerParams
  186. def setTagsMapping(mapping: Array[String]): FinanceNerApproach.this.type

    A map specifying how old tags are mapped to new ones.

    A map specifying how old tags are mapped to new ones. Maps are specified either using a list of comma separated strings, e.g. ("OLDTAG1,NEWTAG1", "OLDTAG2,NEWTAG2", ...) or by a Map data structure. It only works if setOverrideExistingTags is false.

    Definition Classes
    MedicalNerParams
  187. def setTestDataset(er: ExternalResource): FinanceNerApproach.this.type
    Definition Classes
    EvaluationDLParams
  188. def setTestDataset(path: String, readAs: Format, options: Map[String, String]): FinanceNerApproach.this.type
    Definition Classes
    EvaluationDLParams
  189. def setUseBestModel(value: Boolean): FinanceNerApproach.this.type

    Definition Classes
    MedicalNerParams
  190. def setUseContrib(value: Boolean): FinanceNerApproach.this.type

    Whether to use contrib LSTM Cells.

    Whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy.

    Definition Classes
    MedicalNerParams
  191. def setValidationSplit(validationSplit: Float): FinanceNerApproach.this.type
    Definition Classes
    EvaluationDLParams
  192. def setVerbose(verbose: Level): FinanceNerApproach.this.type
    Definition Classes
    EvaluationDLParams
  193. def setVerbose(verbose: Int): FinanceNerApproach.this.type
    Definition Classes
    EvaluationDLParams
  194. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  195. val tagsMapping: MapFeature[String, String]

    A map specifying how old tags are mapped to new ones.

    A map specifying how old tags are mapped to new ones.

    It only works if overrideExistingTags is set to false.

    Definition Classes
    MedicalNerParams
  196. val testDataset: ExternalResourceParam
    Definition Classes
    EvaluationDLParams
  197. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  198. def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): MedicalNerModel
    Definition Classes
    MedicalNerApproach → AnnotatorApproach
  199. final def transformSchema(schema: StructType): StructType
    Definition Classes
    AnnotatorApproach → PipelineStage
  200. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  201. val uid: String
    Definition Classes
    MedicalNerApproach → Identifiable
  202. val useBestModel: BooleanParam

    Whether to restore and use the model from the epoch that has achieved the best performance at the end of the training.

    Whether to restore and use the model from the epoch that has achieved the best performance at the end of the training.

    By default false (keep the model from the last trained epoch).

    The best model depends on the earlyStoppingCriterion, which can be F1-score on test/validation dataset or the value of loss.

    Definition Classes
    MedicalNerParams
  203. val useContrib: BooleanParam

    whether to use contrib LSTM Cells.

    whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy. By default true.

    Definition Classes
    MedicalNerParams
  204. def validate(schema: StructType): Boolean
    Attributes
    protected
    Definition Classes
    AnnotatorApproach
  205. val validationSplit: FloatParam
    Definition Classes
    EvaluationDLParams
  206. val verbose: IntParam
    Definition Classes
    EvaluationDLParams
  207. val verboseLevel: Level
    Definition Classes
    MedicalNerApproach → Logging
  208. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  209. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  210. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  211. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable

Inherited from MedicalNerApproach

Inherited from CheckLicense

Inherited from EvaluationDLParams

Inherited from ParamsAndFeaturesWritable

Inherited from Logging

Inherited from NerApproach[MedicalNerApproach]

Inherited from MedicalNerParams

Inherited from HasFeatures

Inherited from AnnotatorApproach[MedicalNerModel]

Inherited from CanBeLazy

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from HasOutputAnnotatorType

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from Estimator[MedicalNerModel]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters