class LegalNerModel extends MedicalNerModel

Linear Supertypes
MedicalNerModel, CheckLicense, HasStorageRef, WriteTensorflowModel, HasBatchedAnnotate[MedicalNerModel], AnnotatorModel[MedicalNerModel], CanBeLazy, RawAnnotator[MedicalNerModel], HasOutputAnnotationCol, HasInputAnnotationCols, HasOutputAnnotatorType, ParamsAndFeaturesWritable, HasFeatures, DefaultParamsWritable, MLWritable, Model[MedicalNerModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. LegalNerModel
  2. MedicalNerModel
  3. CheckLicense
  4. HasStorageRef
  5. WriteTensorflowModel
  6. HasBatchedAnnotate
  7. AnnotatorModel
  8. CanBeLazy
  9. RawAnnotator
  10. HasOutputAnnotationCol
  11. HasInputAnnotationCols
  12. HasOutputAnnotatorType
  13. ParamsAndFeaturesWritable
  14. HasFeatures
  15. DefaultParamsWritable
  16. MLWritable
  17. Model
  18. Transformer
  19. PipelineStage
  20. Logging
  21. Params
  22. Serializable
  23. Serializable
  24. Identifiable
  25. AnyRef
  26. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LegalNerModel()
  2. new LegalNerModel(uid: String)

Type Members

  1. type AnnotationContent = Seq[Row]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  12. def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
    Definition Classes
    MedicalNerModel → HasBatchedAnnotate
  13. def batchProcess(rows: Iterator[_]): Iterator[Row]
    Definition Classes
    HasBatchedAnnotate
  14. val batchSize: IntParam
    Definition Classes
    HasBatchedAnnotate
  15. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    MedicalNerModel → AnnotatorModel
  16. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  17. def checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String]): Unit
    Definition Classes
    CheckLicense
  18. def checkValidScope(scope: String): Unit
    Definition Classes
    CheckLicense
  19. def checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  20. def checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  21. val classes: StringArrayParam
    Definition Classes
    MedicalNerModel
  22. final def clear(param: Param[_]): LegalNerModel.this.type
    Definition Classes
    Params
  23. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  24. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    MedicalNerModel
  25. def copy(extra: ParamMap): MedicalNerModel
    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  26. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  27. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  28. val datasetParams: StructFeature[DatasetEncoderParams]

    datasetParams

    datasetParams

    Definition Classes
    MedicalNerModel
  29. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  30. val doExceptionHandling: BooleanParam

    If true, effective batchsize is 1 and exceptions are handled.

    If true, effective batchsize is 1 and exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next batch. This comes with a performance penalty.

    Definition Classes
    MedicalNerModel
  31. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  32. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  33. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  34. def explainParams(): String
    Definition Classes
    Params
  35. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  36. def extraValidateMsg: String
    Attributes
    protected
    Definition Classes
    RawAnnotator
  37. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  38. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  39. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  40. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  41. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  42. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  43. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  44. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  45. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  46. def getBatchSize: Int
    Definition Classes
    HasBatchedAnnotate
  47. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  48. def getClasses: Array[String]

    get the tags used to trained this MedicalNerModel

    get the tags used to trained this MedicalNerModel

    Definition Classes
    MedicalNerModel
  49. def getConfigProtoBytes: Option[Array[Byte]]

    datasetParams

    datasetParams

    Definition Classes
    MedicalNerModel
  50. def getConfigProtoBytesAsInt: Option[Array[Int]]
    Definition Classes
    MedicalNerModel
  51. def getDatasetParams: DatasetEncoderParams
    Definition Classes
    MedicalNerModel
  52. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  53. def getIncludeAllConfidenceScores: Boolean

    whether to include all confidence scores in annotation metadata or just the score of the predicted tag

    whether to include all confidence scores in annotation metadata or just the score of the predicted tag

    Definition Classes
    MedicalNerModel
  54. def getIncludeConfidence: Boolean

    whether to include confidence scores in annotation metadata

    whether to include confidence scores in annotation metadata

    Definition Classes
    MedicalNerModel
  55. def getInferenceBatchSize: Int

    get the number of sentences to process in a single batch during inference

    get the number of sentences to process in a single batch during inference

    Definition Classes
    MedicalNerModel
  56. def getInputCols: Array[String]
    Definition Classes
    HasInputAnnotationCols
  57. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  58. def getLicenseScopes: Seq[String]
    Attributes
    protected
    Definition Classes
    LegalNerModelMedicalNerModel
  59. def getMinProba: Float

    Minimum probability.

    Minimum probability. Used only if there is no CRF on top of LSTM layer.

    Definition Classes
    MedicalNerModel
  60. def getModelIfNotSet: TensorflowMedicalNer

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    MedicalNerModel
  61. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  62. final def getOutputCol: String
    Definition Classes
    HasOutputAnnotationCol
  63. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  64. def getSentenceTokenIndex: Boolean

    whether to include the token index for each sentence in annotation metadata

    whether to include the token index for each sentence in annotation metadata

    Definition Classes
    MedicalNerModel
  65. def getStorageRef: String
    Definition Classes
    HasStorageRef
  66. def getTrainingClassDistribution: Map[String, Long]
    Definition Classes
    MedicalNerModel
  67. def getTrainingClassDistributionJava: Map[String, Long]
    Definition Classes
    MedicalNerModel
  68. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  69. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  70. def hasParent: Boolean
    Definition Classes
    Model
  71. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  72. val includeAllConfidenceScores: BooleanParam

    whether to include all confidence scores in annotation metadata or just score of the predicted tag

    whether to include all confidence scores in annotation metadata or just score of the predicted tag

    Definition Classes
    MedicalNerModel
  73. val includeConfidence: BooleanParam

    whether to include confidence scores in annotation metadata

    whether to include confidence scores in annotation metadata

    Definition Classes
    MedicalNerModel
  74. val inferenceBatchSize: IntParam

    Number of sentences to process in a single batch during inference

    Number of sentences to process in a single batch during inference

    Definition Classes
    MedicalNerModel
  75. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  76. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. val inputAnnotatorTypes: Array[String]

    Required input Annotators coulumns, expects DOCUMENT, TOKEN, WORD_EMBEDDINGS

    Required input Annotators coulumns, expects DOCUMENT, TOKEN, WORD_EMBEDDINGS

    Definition Classes
    MedicalNerModel → HasInputAnnotationCols
  78. final val inputCols: StringArrayParam
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  79. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  80. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  81. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  82. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  83. val labelCasing: Param[String]

    Set the tag to case sensitive or not.Setting all labels of the NER models upper/lower case.

    Set the tag to case sensitive or not.Setting all labels of the NER models upper/lower case. values upper|lower

    Definition Classes
    MedicalNerModel
  84. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  85. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  86. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  87. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  88. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  89. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  90. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  91. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  92. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  93. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  94. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  95. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  96. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  97. val minProba: FloatParam

    Minimum probability.

    Minimum probability. Used only if there is no CRF on top of LSTM layer.

    Definition Classes
    MedicalNerModel
  98. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  99. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  100. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  101. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  102. def onWrite(path: String, spark: SparkSession): Unit
    Definition Classes
    MedicalNerModel → ParamsAndFeaturesWritable
  103. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  104. val outputAnnotatorType: String

    Output Annnotator type : NAMED_ENTITY

    Output Annnotator type : NAMED_ENTITY

    Definition Classes
    MedicalNerModel → HasOutputAnnotatorType
  105. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  106. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  107. var parent: Estimator[MedicalNerModel]
    Definition Classes
    Model
  108. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  109. val sentenceTokenIndex: BooleanParam

    whether to include the token index for each sentence in annotation metadata, by default false.

    whether to include the token index for each sentence in annotation metadata, by default false. If the value is true, the process might be slowed down.

    Definition Classes
    MedicalNerModel
  110. def set[T](feature: StructFeature[T], value: T): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  111. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  112. def set[T](feature: SetFeature[T], value: Set[T]): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  113. def set[T](feature: ArrayFeature[T], value: Array[T]): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  114. final def set(paramPair: ParamPair[_]): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  115. final def set(param: String, value: Any): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  116. final def set[T](param: Param[T], value: T): LegalNerModel.this.type
    Definition Classes
    Params
  117. def setBatchSize(size: Int): LegalNerModel.this.type
    Definition Classes
    HasBatchedAnnotate
  118. def setConfigProtoBytes(bytes: Array[Int]): LegalNerModel.this.type

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    MedicalNerModel
  119. def setDatasetParams(params: DatasetEncoderParams): LegalNerModel.this.type

    datasetParams

    datasetParams

    Definition Classes
    MedicalNerModel
  120. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  121. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  122. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  123. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  124. final def setDefault(paramPairs: ParamPair[_]*): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  125. final def setDefault[T](param: Param[T], value: T): LegalNerModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  126. def setDoExceptionHandling(value: Boolean): LegalNerModel.this.type

    If true, effective batchsize is 1 and exceptions are handled.

    If true, effective batchsize is 1 and exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next batch. This comes with a performance penalty.

    Definition Classes
    MedicalNerModel
  127. def setIncludeAllConfidenceScores(value: Boolean): LegalNerModel.this.type

    whether to include confidence scores for all tags rather than just for the predicted one

    whether to include confidence scores for all tags rather than just for the predicted one

    Definition Classes
    MedicalNerModel
  128. def setIncludeConfidence(value: Boolean): LegalNerModel.this.type

    whether to include confidence scores in annotation metadata

    whether to include confidence scores in annotation metadata

    Definition Classes
    MedicalNerModel
  129. def setInferenceBatchSize(value: Int): LegalNerModel.this.type

    set the number of sentences to process in a single batch during inference

    set the number of sentences to process in a single batch during inference

    Definition Classes
    MedicalNerModel
  130. final def setInputCols(value: String*): LegalNerModel.this.type
    Definition Classes
    HasInputAnnotationCols
  131. def setInputCols(value: Array[String]): LegalNerModel.this.type
    Definition Classes
    HasInputAnnotationCols
  132. def setLabelCasing(value: String): LegalNerModel.this.type
    Definition Classes
    MedicalNerModel
  133. def setLazyAnnotator(value: Boolean): LegalNerModel.this.type
    Definition Classes
    CanBeLazy
  134. def setMinProbability(minProba: Float): LegalNerModel.this.type

    Minimum probability.

    Minimum probability. Used only if there is no CRF on top of LSTM layer.

    Definition Classes
    MedicalNerModel
  135. def setModelIfNotSet(spark: SparkSession, tf: TensorflowWrapper): LegalNerModel.this.type
    Definition Classes
    MedicalNerModel
  136. final def setOutputCol(value: String): LegalNerModel.this.type
    Definition Classes
    HasOutputAnnotationCol
  137. def setParent(parent: Estimator[MedicalNerModel]): MedicalNerModel
    Definition Classes
    Model
  138. def setSentenceTokenIndex(value: Boolean): LegalNerModel.this.type

    whether to include the token index for each sentence in annotation metadata, by default false.

    whether to include the token index for each sentence in annotation metadata, by default false. If the value is true, the process might be slowed down.

    Definition Classes
    MedicalNerModel
  139. def setStorageRef(value: String): LegalNerModel.this.type
    Definition Classes
    HasStorageRef
  140. def setTrainingClassDistribution(value: Map[String, Long]): LegalNerModel.this.type

    set the number of sentences to process in a single batch during inference

    set the number of sentences to process in a single batch during inference

    Definition Classes
    MedicalNerModel
  141. val storageRef: Param[String]
    Definition Classes
    HasStorageRef
  142. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  143. def tag(tokenized: Array[Array[WordpieceEmbeddingsSentence]]): Seq[Array[NerTaggedSentence]]
    Definition Classes
    MedicalNerModel
  144. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  145. val trainingClassDistribution: MapFeature[String, Long]
    Definition Classes
    MedicalNerModel
  146. final def transform(dataset: Dataset[_]): DataFrame
    Definition Classes
    AnnotatorModel → Transformer
  147. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  148. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  149. final def transformSchema(schema: StructType): StructType
    Definition Classes
    RawAnnotator → PipelineStage
  150. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  151. val uid: String
    Definition Classes
    LegalNerModelMedicalNerModel → Identifiable
  152. def validate(schema: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  153. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  154. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  155. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  156. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  157. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  158. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  159. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String): Unit
    Definition Classes
    WriteTensorflowModel
  160. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]]): Unit
    Definition Classes
    WriteTensorflowModel
  161. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]], savedSignatures: Option[Map[String, String]]): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from MedicalNerModel

Inherited from CheckLicense

Inherited from HasStorageRef

Inherited from WriteTensorflowModel

Inherited from HasBatchedAnnotate[MedicalNerModel]

Inherited from AnnotatorModel[MedicalNerModel]

Inherited from CanBeLazy

Inherited from RawAnnotator[MedicalNerModel]

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[MedicalNerModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

anno

getParam

param

setParam

Ungrouped