class TensorflowMedicalNer extends Serializable with Logging
          
            Linear Supertypes
          
          
        
          
          
            
          
          
        
        
            Ordering
            
          - Alphabetic
- By Inheritance
                  Inherited
                  
                  
- TensorflowMedicalNer
- Logging
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
              Visibility
              
        - Public
- All
Instance Constructors
-  new TensorflowMedicalNer(tensorflow: TensorflowWrapper, encoder: MedicalNerDatasetEncoder, verboseLevel: nlp.annotators.ner.Verbose.Value)
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
-  def calcStat(tp: Int, fp: Int, fn: Int): (Float, Float, Float)
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
-  val encoder: MedicalNerDatasetEncoder
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
-  def getInputDims: (Integer, Integer, Integer)
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLogName: String
      
      
      - Definition Classes
- TensorflowMedicalNer → Logging
 
-  def getPiecesTags(tokenTags: TextSentenceLabels, sentence: WordpieceEmbeddingsSentence): Array[String]
-  def getPiecesTags(tokenTags: Array[TextSentenceLabels], sentences: Array[WordpieceEmbeddingsSentence]): Array[Array[String]]
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log(value: ⇒ String, minLevel: Level): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        logger: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
-  def measure(labeled: Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]], extended: Boolean = false, includeConfidence: Boolean = false, includeAllConfidenceScores: Boolean = false, enableOutputLogs: Boolean = false, outputLogsPath: String, batchSize: Int, description: String = "", uuid: String = Identifiable.randomUID("annotator")): (f1Score, macroF1Score)
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        outputLog(value: ⇒ String, uuid: String, shouldLog: Boolean, outputLogsPath: String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
-  def padBatch(batchInput: NerBatch): NerBatch
-  def padTags(batchTags: Array[Array[Int]]): Array[Array[Int]]
-  def predict(dataset: Array[WordpieceEmbeddingsSentence], configProtoBytes: Option[Array[Byte]] = None, includeConfidence: Boolean = false, includeAllConfidenceScores: Boolean = false, batchSize: Int = 1): Array[Array[(String, Option[Array[Map[String, String]]])]]
- 
      
      
      
        
      
    
      
        
        def
      
      
        predictWithLoss(dataset: Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)], configProtoBytes: Option[Array[Byte]] = None, includeConfidence: Boolean = false, includeAllConfidenceScores: Boolean = false, batchSize: Int = 1): (Float, Array[Array[(String, Option[Array[Map[String, String]]])]])
      
      
      - Attributes
- protected
 
-  def saveBestModel(): Session
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
-  def tagsForTokens(labels: Array[Array[(String, Option[Array[Map[String, String]]])]], pieces: Array[WordpieceEmbeddingsSentence]): Array[Array[(String, Option[Array[Map[String, String]]])]]
-  def tagsForTokens(labels: Array[(String, Option[Array[Map[String, String]]])], pieces: WordpieceEmbeddingsSentence): Array[(String, Option[Array[Map[String, String]]])]
-  val tensorflow: TensorflowWrapper
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- AnyRef → Any
 
-  def train(dataSetGenerator: (Long) ⇒ (Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]], Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]]), trainLength: Long, validLength: Long, lr: Float, po: Float, dropout: Float, startEpoch: Int = 0, isPretrained: Boolean = false, endEpoch: Int, graphFileName: String = "", test: ⇒ Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]] = Iterator.empty, configProtoBytes: Option[Array[Byte]] = None, validationSplit: Float = 0.0f, evaluationLogExtended: Boolean = false, includeConfidence: Boolean = false, includeAllConfidenceScores: Boolean = false, enableOutputLogs: Boolean = false, outputLogsPath: String, uuid: String = Identifiable.randomUID("annotator"), batchSize: Int, useBestModel: Boolean = false, earlyStopping: Option[EarlyStopping] = None, randomValidationSplitPerEpoch: Boolean = false, randomSeed: Int): Session
- 
      
      
      
        
      
    
      
        
        val
      
      
        verboseLevel: nlp.annotators.ner.Verbose.Value
      
      
      - Definition Classes
- TensorflowMedicalNer → Logging
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()