class TensorflowMedicalNer extends Serializable with Logging
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- TensorflowMedicalNer
- Logging
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new TensorflowMedicalNer(tensorflow: TensorflowWrapper, encoder: MedicalNerDatasetEncoder, verboseLevel: nlp.annotators.ner.Verbose.Value)
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- def calcStat(tp: Int, fp: Int, fn: Int): (Float, Float, Float)
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- val encoder: MedicalNerDatasetEncoder
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getInputDims: (Integer, Integer, Integer)
-
def
getLogName: String
- Definition Classes
- TensorflowMedicalNer → Logging
- def getPiecesTags(tokenTags: TextSentenceLabels, sentence: WordpieceEmbeddingsSentence): Array[String]
- def getPiecesTags(tokenTags: Array[TextSentenceLabels], sentences: Array[WordpieceEmbeddingsSentence]): Array[Array[String]]
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
log(value: ⇒ String, minLevel: Level): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
logger: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def measure(labeled: Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]], extended: Boolean = false, includeConfidence: Boolean = false, includeAllConfidenceScores: Boolean = false, enableOutputLogs: Boolean = false, outputLogsPath: String, batchSize: Int, description: String = "", uuid: String = Identifiable.randomUID("annotator")): (f1Score, macroF1Score)
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
outputLog(value: ⇒ String, uuid: String, shouldLog: Boolean, outputLogsPath: String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def padBatch(batchInput: NerBatch): NerBatch
- def padTags(batchTags: Array[Array[Int]]): Array[Array[Int]]
- def predict(dataset: Array[WordpieceEmbeddingsSentence], configProtoBytes: Option[Array[Byte]] = None, includeConfidence: Boolean = false, includeAllConfidenceScores: Boolean = false, batchSize: Int = 1): Array[Array[(String, Option[Array[Map[String, String]]])]]
-
def
predictWithLoss(dataset: Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)], configProtoBytes: Option[Array[Byte]] = None, includeConfidence: Boolean = false, includeAllConfidenceScores: Boolean = false, batchSize: Int = 1): (Float, Array[Array[(String, Option[Array[Map[String, String]]])]])
- Attributes
- protected
- def saveBestModel(): Session
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- def tagsForTokens(labels: Array[Array[(String, Option[Array[Map[String, String]]])]], pieces: Array[WordpieceEmbeddingsSentence]): Array[Array[(String, Option[Array[Map[String, String]]])]]
- def tagsForTokens(labels: Array[(String, Option[Array[Map[String, String]]])], pieces: WordpieceEmbeddingsSentence): Array[(String, Option[Array[Map[String, String]]])]
- val tensorflow: TensorflowWrapper
-
def
toString(): String
- Definition Classes
- AnyRef → Any
- def train(dataSetGenerator: (Long) ⇒ (Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]], Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]]), trainLength: Long, validLength: Long, lr: Float, po: Float, dropout: Float, startEpoch: Int = 0, isPretrained: Boolean = false, endEpoch: Int, graphFileName: String = "", test: ⇒ Iterator[Array[(TextSentenceLabels, WordpieceEmbeddingsSentence)]] = Iterator.empty, configProtoBytes: Option[Array[Byte]] = None, validationSplit: Float = 0.0f, evaluationLogExtended: Boolean = false, includeConfidence: Boolean = false, includeAllConfidenceScores: Boolean = false, enableOutputLogs: Boolean = false, outputLogsPath: String, uuid: String = Identifiable.randomUID("annotator"), batchSize: Int, useBestModel: Boolean = false, earlyStopping: Option[EarlyStopping] = None, randomValidationSplitPerEpoch: Boolean = false, randomSeed: Int): Session
-
val
verboseLevel: nlp.annotators.ner.Verbose.Value
- Definition Classes
- TensorflowMedicalNer → Logging
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()