c

com.johnsnowlabs.ml.tensorflow

MedicalTensorflowBertClassification

class MedicalTensorflowBertClassification extends MedicalBertClassification

Linear Supertypes
MedicalBertClassification, MedicalClassification, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MedicalTensorflowBertClassification
  2. MedicalBertClassification
  3. MedicalClassification
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MedicalTensorflowBertClassification(tensorflowWrapper: TensorflowWrapper, sentenceStartTokenId: Int, sentenceEndTokenId: Int, configProtoBytes: Option[Array[Byte]] = None, tags: Map[String, Int] = Map(), signatures: Option[Map[String, String]] = None, vocabulary: Map[String, Int], sentenceSeparator: Option[String] = None)

    tensorflowWrapper

    Bert Model wrapper with TensorFlow Wrapper

    sentenceStartTokenId

    Id of sentence start Token

    sentenceEndTokenId

    Id of sentence end Token.

    configProtoBytes

    Configuration for TensorFlow session

    tags

    labels which model was trained with in order

    signatures

    TF v2 signatures in Spark NLP

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val _tfBertSignatures: Map[String, String]
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def calculateSoftmax(scores: Array[Float]): Array[Float]
    Definition Classes
    MedicalClassification
  7. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  8. def encode(sentences: Seq[(WordpieceTokenizedSentence, Int)], maxSequenceLength: Int): Seq[Array[Int]]

    Encode the input sequence to indexes IDs adding padding where necessary

    Encode the input sequence to indexes IDs adding padding where necessary

    Definition Classes
    MedicalClassification
  9. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. def findIndexedToken(tokenizedSentences: Seq[TokenizedSentence], sentence: (WordpieceTokenizedSentence, Int), tokenPiece: TokenPiece): Option[IndexedToken]
  13. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  14. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  17. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  19. def predict(tokenizedSentences: Seq[TokenizedSentence], batchSize: Int, maxSentenceLength: Int, caseSensitive: Boolean, tags: Map[String, Int], useTokenTypes: Boolean = true): Seq[Annotation]
    Definition Classes
    MedicalClassification
  20. def predictSequence(tokenizedSentences: Seq[TokenizedSentence], sentences: Seq[Sentence], batchSize: Int, maxSentenceLength: Int, caseSensitive: Boolean, coalesceSentences: Boolean = false, tags: Map[String, Int], useTokenTypes: Boolean = true): Seq[Annotation]
    Definition Classes
    MedicalClassification
  21. val sentenceEndTokenId: Int
  22. val sentencePadTokenId: Int
    Attributes
    protected
    Definition Classes
    MedicalBertClassificationMedicalClassification
  23. val sentenceStartTokenId: Int
  24. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  25. def tag(batch: Seq[Array[Int]], useTokenTypes: Boolean = true): Seq[Array[Array[Float]]]
  26. def tagSequence(batch: Seq[Array[Int]], useTokenTypes: Boolean = true): Array[Array[Float]]
  27. val tensorflowWrapper: TensorflowWrapper
  28. def toString(): String
    Definition Classes
    AnyRef → Any
  29. def tokenizeWithAlignment(sentences: Seq[TokenizedSentence], maxSeqLength: Int, caseSensitive: Boolean): Seq[WordpieceTokenizedSentence]
  30. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  33. def wordAndSpanLevelAlignmentWithTokenizer(tokenLogits: Array[Array[Float]], tokenizedSentences: Seq[TokenizedSentence], sentence: (WordpieceTokenizedSentence, Int), tags: Map[String, Int]): Seq[Annotation]

    Word-level and span-level alignment with Tokenizer https://github.com/google-research/bert#tokenization

    Word-level and span-level alignment with Tokenizer https://github.com/google-research/bert#tokenization

    ### Input orig_tokens = ["John", "Johanson", "'s", "house"] labels = ["NNP", "NNP", "POS", "NN"]

    # bert_tokens == ["[CLS]", "john", "johan", "##son", "'", "s", "house", "[SEP]"] # orig_to_tok_map == [1, 2, 4, 6]

    Definition Classes
    MedicalClassification

Inherited from MedicalBertClassification

Inherited from MedicalClassification

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped