class TensorflowBioGPT extends MedicalEncoderDecoderModel
          
            Linear Supertypes
          
          
        
          
          
            
          
          
        
        
            Ordering
            
          - Alphabetic
- By Inheritance
                  Inherited
                  
                  
- TensorflowBioGPT
- MedicalEncoderDecoderModel
- AnyRef
- Any
- Hide All
- Show All
              Visibility
              
        - Public
- All
Instance Constructors
-  new TensorflowBioGPT(tensorflow: TensorflowWrapper, bpeTokenizer: BioGPTTokenizer, configProtoBytes: Option[Array[Byte]] = None, numLayers: Integer = 24, numAttentionHeads: Integer = 16)
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
-  val bpeTokenizer: BioGPTTokenizer
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
-  def decode(sentences: Array[Array[Int]]): Seq[String]
- 
      
      
      
        
      
    
      
        
        def
      
      
        encode(prompts: Seq[Annotation], isCaseSensitive: Boolean): Seq[Array[Int]]
      
      
      - Attributes
- protected
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        encodeQA(questions: Seq[Annotation], contexts: Seq[Annotation], questionPrompt: String, isCaseSensitive: Boolean): Seq[Array[Int]]
      
      
      - Attributes
- protected
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        generate(prompts: Seq[Annotation], batchSize: Int, maxNewTokens: Int, maxContextLength: Int, doSample: Boolean, topK: Int, randomSeed: Option[Int] = None, ignoreTokenIds: Array[Int] = Array(), isCaseSensitive: Boolean, stopAtEos: Boolean, noRepeatNgramSize: Int): Seq[Annotation]
      
      
      - Definition Classes
- TensorflowBioGPT → MedicalEncoderDecoderModel
 
-  def generateNoBeamSearch(inputIds: Seq[Array[Int]], maxContextLength: Int, maxNewTokens: Int, doSample: Boolean, topK: Int, vocabSize: Int, randomSeed: Option[Int], session: Session, ignoreTokenIds: Array[Int], questionAnswerTerminals: Array[Int], skipLastToken: Boolean, useCache: Boolean, returnContext: Boolean, stopAtEos: Boolean, noRepeatNgramSize: Int = 2): (Array[Array[Int]], Array[Float])
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
-  def getGeneratedNgrams(prevInputIds: Seq[Array[Int]], generatedNgrams: Array[Map[IndexedSeq[Int], List[Int]]], hypoIdx: Int, curLen: Int, noRepeatNgramSize: Int): Array[Int]
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        predict(sentences: Seq[Annotation], task: String, batchSize: Int, maxNewTokens: Int, maxTextLength: Int, doSample: Boolean, topK: Int, randomSeed: Option[Int] = None, ignoreTokenIds: Array[Int] = Array(), isCaseSensitive: Boolean, stopAtEos: Boolean, noRepeatNgramSize: Int, refineSummary: Boolean = false, refineSummaryTargetLength: Int = 100, refineChunkSize: Int = 512, refineMaxAttempts: Int = 3): Seq[Annotation]
      
      
      - Definition Classes
- MedicalEncoderDecoderModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        predictQuestions(questionAndContexts: Seq[(Annotation, Annotation)], batchSize: Int, maxNewTokens: Int, maxContextLength: Int, doSample: Boolean, topK: Int, questionPrompt: String, randomSeed: Option[Int] = None, ignoreTokenIds: Array[Int] = Array(), isCaseSensitive: Boolean, questionAnswerTerminals: Array[Int], skipLastToken: Boolean, useCache: Boolean, noRepeatNgramSize: Int): Seq[Annotation]
      
      
      - Definition Classes
- TensorflowBioGPT → MedicalEncoderDecoderModel
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        sessionWarmup(useCache: Boolean): Unit
      
      
      - Attributes
- protected
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        sessionWarmup(): Unit
      
      
      - Attributes
- protected
- Definition Classes
- TensorflowBioGPT → MedicalEncoderDecoderModel
 
-  def softmax(scores: Array[Float]): Array[Float]
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
-  def tag(batch: Seq[Array[Int]], maxNewTokens: Int, maxContextLength: Int, doSample: Boolean, topK: Int, randomSeed: Option[Int], ignoreTokenIds: Array[Int], questionAnswerTerminals: Array[Int], skipLastToken: Boolean, useCache: Boolean, returnContext: Boolean, stopAtEos: Boolean, noRepeatNgramSize: Int): (Array[Array[Int]], Array[Float])
-  val tensorflow: TensorflowWrapper
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()