c

com.johnsnowlabs.ml.tensorflow

TensorflowBioGPT

class TensorflowBioGPT extends MedicalEncoderDecoderModel

Linear Supertypes
MedicalEncoderDecoderModel, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TensorflowBioGPT
  2. MedicalEncoderDecoderModel
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TensorflowBioGPT(tensorflow: TensorflowWrapper, bpeTokenizer: BioGPTTokenizer, configProtoBytes: Option[Array[Byte]] = None, numLayers: Integer = 24, numAttentionHeads: Integer = 16)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. val bpeTokenizer: BioGPTTokenizer
  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  7. def decode(sentences: Array[Array[Int]]): Seq[String]
  8. def encode(prompts: Seq[Annotation], isCaseSensitive: Boolean): Seq[Array[Int]]
    Attributes
    protected
  9. def encodeQA(questions: Seq[Annotation], contexts: Seq[Annotation], questionPrompt: String, isCaseSensitive: Boolean): Seq[Array[Int]]
    Attributes
    protected
  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def generate(prompts: Seq[Annotation], batchSize: Int, maxNewTokens: Int, maxContextLength: Int, doSample: Boolean, topK: Int, randomSeed: Option[Int] = None, ignoreTokenIds: Array[Int] = Array(), isCaseSensitive: Boolean, stopAtEos: Boolean, noRepeatNgramSize: Int): Seq[Annotation]
    Definition Classes
    TensorflowBioGPT → MedicalEncoderDecoderModel
  14. def generateNoBeamSearch(inputIds: Seq[Array[Int]], maxContextLength: Int, maxNewTokens: Int, doSample: Boolean, topK: Int, vocabSize: Int, randomSeed: Option[Int], session: Session, ignoreTokenIds: Array[Int], questionAnswerTerminals: Array[Int], skipLastToken: Boolean, useCache: Boolean, returnContext: Boolean, stopAtEos: Boolean, noRepeatNgramSize: Int = 2): (Array[Array[Int]], Array[Float])
  15. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. def getGeneratedNgrams(prevInputIds: Seq[Array[Int]], generatedNgrams: Array[Map[IndexedSeq[Int], List[Int]]], hypoIdx: Int, curLen: Int, noRepeatNgramSize: Int): Array[Int]
  17. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  18. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  19. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  20. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  21. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  22. def predict(sentences: Seq[Annotation], task: String, batchSize: Int, maxNewTokens: Int, maxTextLength: Int, doSample: Boolean, topK: Int, randomSeed: Option[Int] = None, ignoreTokenIds: Array[Int] = Array(), isCaseSensitive: Boolean, stopAtEos: Boolean, noRepeatNgramSize: Int, refineSummary: Boolean = false, refineSummaryTargetLength: Int = 100, refineChunkSize: Int = 512, refineMaxAttempts: Int = 3): Seq[Annotation]
    Definition Classes
    MedicalEncoderDecoderModel
  23. def predictQuestions(questionAndContexts: Seq[(Annotation, Annotation)], batchSize: Int, maxNewTokens: Int, maxContextLength: Int, doSample: Boolean, topK: Int, questionPrompt: String, randomSeed: Option[Int] = None, ignoreTokenIds: Array[Int] = Array(), isCaseSensitive: Boolean, questionAnswerTerminals: Array[Int], skipLastToken: Boolean, useCache: Boolean, noRepeatNgramSize: Int): Seq[Annotation]
    Definition Classes
    TensorflowBioGPT → MedicalEncoderDecoderModel
  24. def sessionWarmup(useCache: Boolean): Unit
    Attributes
    protected
  25. def sessionWarmup(): Unit
    Attributes
    protected
    Definition Classes
    TensorflowBioGPT → MedicalEncoderDecoderModel
  26. def softmax(scores: Array[Float]): Array[Float]
  27. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  28. def tag(batch: Seq[Array[Int]], maxNewTokens: Int, maxContextLength: Int, doSample: Boolean, topK: Int, randomSeed: Option[Int], ignoreTokenIds: Array[Int], questionAnswerTerminals: Array[Int], skipLastToken: Boolean, useCache: Boolean, returnContext: Boolean, stopAtEos: Boolean, noRepeatNgramSize: Int): (Array[Array[Int]], Array[Float])
  29. val tensorflow: TensorflowWrapper
  30. def toString(): String
    Definition Classes
    AnyRef → Any
  31. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()

Inherited from MedicalEncoderDecoderModel

Inherited from AnyRef

Inherited from Any

Ungrouped