t

com.johnsnowlabs.ml.tensorflow

MedicalClassification

trait MedicalClassification extends AnyRef

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MedicalClassification
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def findIndexedToken(tokenizedSentences: Seq[TokenizedSentence], sentence: (WordpieceTokenizedSentence, Int), tokenPiece: TokenPiece): Option[IndexedToken]
  2. abstract val sentenceEndTokenId: Int
    Attributes
    protected
  3. abstract val sentencePadTokenId: Int
    Attributes
    protected
  4. abstract val sentenceStartTokenId: Int
    Attributes
    protected
  5. abstract def tag(batch: Seq[Array[Int]], useTokenTypes: Boolean = true): Seq[Array[Array[Float]]]
  6. abstract def tagSequence(batch: Seq[Array[Int]], useTokenTypes: Boolean = true): Array[Array[Float]]
  7. abstract def tokenizeWithAlignment(sentences: Seq[TokenizedSentence], maxSeqLength: Int, caseSensitive: Boolean): Seq[WordpieceTokenizedSentence]

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def calculateSoftmax(scores: Array[Float]): Array[Float]
  6. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  7. def encode(sentences: Seq[(WordpieceTokenizedSentence, Int)], maxSequenceLength: Int): Seq[Array[Int]]

    Encode the input sequence to indexes IDs adding padding where necessary

  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  15. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  16. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. def predict(tokenizedSentences: Seq[TokenizedSentence], batchSize: Int, maxSentenceLength: Int, caseSensitive: Boolean, tags: Map[String, Int], useTokenTypes: Boolean = true): Seq[Annotation]
  18. def predictSequence(tokenizedSentences: Seq[TokenizedSentence], sentences: Seq[Sentence], batchSize: Int, maxSentenceLength: Int, caseSensitive: Boolean, coalesceSentences: Boolean = false, tags: Map[String, Int], useTokenTypes: Boolean = true): Seq[Annotation]
  19. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  20. def toString(): String
    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  24. def wordAndSpanLevelAlignmentWithTokenizer(tokenLogits: Array[Array[Float]], tokenizedSentences: Seq[TokenizedSentence], sentence: (WordpieceTokenizedSentence, Int), tags: Map[String, Int]): Seq[Annotation]

    Word-level and span-level alignment with Tokenizer https://github.com/google-research/bert#tokenization

    Word-level and span-level alignment with Tokenizer https://github.com/google-research/bert#tokenization

    ### Input orig_tokens = ["John", "Johanson", "'s", "house"] labels = ["NNP", "NNP", "POS", "NN"]

    # bert_tokens == ["[CLS]", "john", "johan", "##son", "'", "s", "house", "[SEP]"] # orig_to_tok_map == [1, 2, 4, 6]

Inherited from AnyRef

Inherited from Any

Ungrouped