trait MedicalClassification extends AnyRef
Linear Supertypes
Known Subclasses
Ordering
- Alphabetic
- By Inheritance
Inherited
- MedicalClassification
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- All
Abstract Value Members
- abstract def findIndexedToken(tokenizedSentences: Seq[TokenizedSentence], sentence: (WordpieceTokenizedSentence, Int), tokenPiece: TokenPiece): Option[IndexedToken]
- abstract def tag(batch: Seq[Array[Int]], useTokenTypes: Boolean = true): Seq[Array[Array[Float]]]
- abstract def tagSequence(batch: Seq[Array[Int]], useTokenTypes: Boolean = true): Array[Array[Float]]
- abstract def tokenizeWithAlignment(sentences: Seq[TokenizedSentence], maxSeqLength: Int, caseSensitive: Boolean): Seq[WordpieceTokenizedSentence]
Concrete Value Members
- def calculateSoftmax(scores: Array[Float]): Array[Float]
-
def
encode(sentences: Seq[(WordpieceTokenizedSentence, Int)], maxSequenceLength: Int): Seq[Array[Int]]
Encode the input sequence to indexes IDs adding padding where necessary
- def predict(tokenizedSentences: Seq[TokenizedSentence], batchSize: Int, maxSentenceLength: Int, caseSensitive: Boolean, tags: Map[String, Int], useTokenTypes: Boolean = true): Seq[Annotation]
- def predictSequence(tokenizedSentences: Seq[TokenizedSentence], sentences: Seq[Sentence], batchSize: Int, maxSentenceLength: Int, caseSensitive: Boolean, coalesceSentences: Boolean = false, tags: Map[String, Int], useTokenTypes: Boolean = true): Seq[Annotation]
-
def
wordAndSpanLevelAlignmentWithTokenizer(tokenLogits: Array[Array[Float]], tokenizedSentences: Seq[TokenizedSentence], sentence: (WordpieceTokenizedSentence, Int), tags: Map[String, Int]): Seq[Annotation]
Word-level and span-level alignment with Tokenizer https://github.com/google-research/bert#tokenization
Word-level and span-level alignment with Tokenizer https://github.com/google-research/bert#tokenization
### Input orig_tokens = ["John", "Johanson", "'s", "house"] labels = ["NNP", "NNP", "POS", "NN"]
# bert_tokens == ["[CLS]", "john", "johan", "##son", "'", "s", "house", "[SEP]"] # orig_to_tok_map == [1, 2, 4, 6]