trait GenericClassifierParams extends Params
- Grouped
- Alphabetic
- By Inheritance
- GenericClassifierParams
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
batchSize: IntParam
Batch size
-
final
def
clear(param: Param[_]): GenericClassifierParams.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
datasetInfo: Param[String]
Descriptive information about the dataset being used.
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
dropout: FloatParam
Dropout coefficient
-
val
epochsN: IntParam
Maximum number of epochs to train
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
val
featureScaling: Param[String]
Feature scaling method.
Feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling)
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
val
fixImbalance: BooleanParam
Fix the imbalance in the training set by replicating examples of under represented categories
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getBatchSize: Int
Batch size
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getDatasetInfo: String
get descriptive information about the dataset being used
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getDropout: Float
Dropout coefficient
-
def
getFeatureScaling: String
Get feature scaling method
-
def
getFixImbalance: Boolean
Fix imbalance in training set
-
def
getLabelColumn: String
Column with label per each document
-
def
getLearningRate: Float
Learning Rate
-
def
getMaxEpochs: Int
Maximum number of epochs to train
-
def
getModelFile: String
Model file name
-
def
getMultiClass: Boolean
Gets the model multi class prediction mode
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputLogsPath: String
Get output logs path
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch.
Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
labelColumn: Param[String]
Column with label per each document
-
val
learningRate: FloatParam
Learning Rate
-
val
modelFile: Param[String]
Location of file of the model used for classification
-
val
multiClass: BooleanParam
If multiClass is set, the model will return all the labels with corresponding scores.
If multiClass is set, the model will return all the labels with corresponding scores. By default, multiClass is false.
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
outputLogsPath: Param[String]
Folder path to save training logs.
Folder path to save training logs. If no path is specified, the logs won't be stored in disk. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
final
def
set(paramPair: ParamPair[_]): GenericClassifierParams.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): GenericClassifierParams.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): GenericClassifierParams.this.type
- Definition Classes
- Params
-
def
setBatchSize(batch: Int): GenericClassifierParams.this.type
Batch size
-
def
setDatasetInfo(value: String): GenericClassifierParams.this.type
set descriptive information about the dataset being used
-
final
def
setDefault(paramPairs: ParamPair[_]*): GenericClassifierParams.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): GenericClassifierParams.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDropout(dropout: Float): GenericClassifierParams.this.type
Dropout coefficient
-
def
setEpochsNumber(epochs: Int): GenericClassifierParams.this.type
Maximum number of epochs to train
-
def
setFeatureScaling(featureScaling: String): GenericClassifierParams.this.type
Set the feature scaling method.
Set the feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling)
-
def
setFixImbalance(fix: Boolean): GenericClassifierParams.this.type
Fix imbalance of training set
-
def
setLabelColumn(column: String): GenericClassifierParams.this.type
Column with label per each document
-
def
setModelFile(modelFile: String): GenericClassifierParams.this.type
Set the model file name
-
def
setMultiClass(value: Boolean): GenericClassifierParams.this.type
Sets the model in multi class prediction mode
-
def
setOutputLogsPath(outputLogsPath: String): GenericClassifierParams.this.type
Set the output log path
-
def
setValidationSplit(validationSplit: Float): GenericClassifierParams.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch.
Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.
-
def
setlearningRate(lr: Float): GenericClassifierParams.this.type
Learning Rate
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
validationSplit: FloatParam
The proportion of training dataset to be used as validation set.
The proportion of training dataset to be used as validation set.
The model will be validated against this dataset on each Epoch and will not be used for training. The value should be between 0.0 and 1.0.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()