com.johnsnowlabs.nlp.annotators.classification
GenericLogRegClassifierApproach 
            Companion class GenericLogRegClassifierApproach
          
      object GenericLogRegClassifierApproach extends GenericLogRegClassifierApproach
- Grouped
- Alphabetic
- By Inheritance
- GenericLogRegClassifierApproach
- GenericLogRegClassifierApproach
- GenericClassifierApproach
- CheckLicense
- HandleExceptionParams
- GenericClassifierParams
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
- 
      
      
      
        
      
    
      
        
        type
      
      
        AnnotatorType = String
      
      
      - Definition Classes
- HasOutputAnnotatorType
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        $[T](param: Param[T]): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): GenericClassifierModel
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        batchSize: IntParam
      
      
      Batch size Batch size - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        beforeTraining(spark: SparkSession): Unit
      
      
      - Definition Classes
- GenericClassifierApproach → AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String]): Unit
      
      
      - Definition Classes
- CheckLicense
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        checkValidScope(scope: String): Unit
      
      
      - Definition Classes
- CheckLicense
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean): Unit
      
      
      - Definition Classes
- CheckLicense
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean): Unit
      
      
      - Definition Classes
- CheckLicense
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        clear(param: Param[_]): GenericLogRegClassifierApproach.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        copy(extra: ParamMap): Estimator[GenericClassifierModel]
      
      
      - Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        copyValues[T <: Params](to: T, extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        datasetInfo: Param[String]
      
      
      Descriptive information about the dataset being used. Descriptive information about the dataset being used. - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        defaultCopy[T <: Params](extra: ParamMap): T
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        description: String
      
      
      Trains TensorFlow model for multi-class text classification Trains TensorFlow model for multi-class text classification - Definition Classes
- GenericClassifierApproach → AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        doExceptionHandling: BooleanParam
      
      
      If true, exceptions are handled. If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty. - Definition Classes
- HandleExceptionParams
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        dropout: FloatParam
      
      
      Dropout coefficient Dropout coefficient - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        epochsN: IntParam
      
      
      Maximum number of epochs to train Maximum number of epochs to train - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      - Definition Classes
- AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParam(param: Param[_]): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        explainParams(): String
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        extractParamMap(extra: ParamMap): ParamMap
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        featureScaling: Param[String]
      
      
      Feature scaling method. Feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling) - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      - Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        fit(dataset: Dataset[_]): GenericClassifierModel
      
      
      - Definition Classes
- AnnotatorApproach → Estimator
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[GenericClassifierModel]
      
      
      - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], paramMap: ParamMap): GenericClassifierModel
      
      
      - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): GenericClassifierModel
      
      
      - Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        fixImbalance: BooleanParam
      
      
      Fix the imbalance in the training set by replicating examples of under represented categories Fix the imbalance in the training set by replicating examples of under represented categories - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        get[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getBatchSize: Int
      
      
      Batch size Batch size - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getDatasetInfo: String
      
      
      get descriptive information about the dataset being used get descriptive information about the dataset being used - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getDefault[T](param: Param[T]): Option[T]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getDropout: Float
      
      
      Dropout coefficient Dropout coefficient - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getExistingLabels(): Array[String]
      
      
      - Attributes
- protected
- Definition Classes
- GenericClassifierApproach
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getFeatureScaling: String
      
      
      Get feature scaling method Get feature scaling method - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getFixImbalance: Boolean
      
      
      Fix imbalance in training set Fix imbalance in training set - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getInputCols: Array[String]
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLabelColumn: String
      
      
      Column with label per each document Column with label per each document - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLazyAnnotator: Boolean
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getLearningRate: Float
      
      
      Learning Rate Learning Rate - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getMaxEpochs: Int
      
      
      Maximum number of epochs to train Maximum number of epochs to train - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getModelFile: String
      
      
      Model file name Model file name - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getMultiClass: Boolean
      
      
      Gets the model multi class prediction mode Gets the model multi class prediction mode - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOrDefault[T](param: Param[T]): T
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        getOutputCol: String
      
      
      - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getOutputLogsPath: String
      
      
      Get output logs path Get output logs path - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getParam(paramName: String): Param[Any]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getTFWrapper(): TensorflowWrapper
      
      
      - Attributes
- protected
- Definition Classes
- GenericClassifierApproach
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        getValidationSplit: Float
      
      
      Choose the proportion of training dataset to be validated against the model on each Epoch. Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off. - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        hasDefault[T](param: Param[T]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hasParam(paramName: String): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      - Definition Classes
- AnyRef → Any
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        initializeLogIfNecessary(isInterpreter: Boolean): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        inputAnnotatorTypes: Array[AnnotatorType]
      
      
      Input annotator types : SENTENCE_EMBEDDINGS Input annotator types : SENTENCE_EMBEDDINGS - Definition Classes
- GenericLogRegClassifierApproach → GenericClassifierApproach → HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        inputCols: StringArrayParam
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isDefined(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      - Definition Classes
- Any
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        isSet(param: Param[_]): Boolean
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        isTraceEnabled(): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        labelColumn: Param[String]
      
      
      Column with label per each document Column with label per each document - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        lazyAnnotator: BooleanParam
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        learningRate: FloatParam
      
      
      Learning Rate Learning Rate - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        log: Logger
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logDebug(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logError(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logInfo(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logName: String
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logTrace(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String, throwable: Throwable): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        logWarning(msg: ⇒ String): Unit
      
      
      - Attributes
- protected
- Definition Classes
- Logging
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        modelFile: Param[String]
      
      
      Location of file of the model used for classification Location of file of the model used for classification - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        msgHelper(schema: StructType): String
      
      
      - Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        multiClass: BooleanParam
      
      
      If multiClass is set, the model will return all the labels with corresponding scores. If multiClass is set, the model will return all the labels with corresponding scores. By default, multiClass is false. - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        onTrained(model: GenericClassifierModel, spark: SparkSession): Unit
      
      
      - Definition Classes
- AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        optionalInputAnnotatorTypes: Array[String]
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        outputAnnotatorType: String
      
      
      Output annotator type : CATEGORY Output annotator type : CATEGORY - Definition Classes
- GenericClassifierApproach → HasOutputAnnotatorType
 
- 
      
      
      
        
      
    
      
        final 
        val
      
      
        outputCol: Param[String]
      
      
      - Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        outputLogsPath: Param[String]
      
      
      Folder path to save training logs. Folder path to save training logs. If no path is specified, the logs won't be stored in disk. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3). - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        lazy val
      
      
        params: Array[Param[_]]
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        resumeTraining: Boolean
      
      
      - Attributes
- protected
- Definition Classes
- GenericClassifierApproach
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        save(path: String): Unit
      
      
      - Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(paramPair: ParamPair[_]): GenericLogRegClassifierApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set(param: String, value: Any): GenericLogRegClassifierApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        set[T](param: Param[T], value: T): GenericLogRegClassifierApproach.this.type
      
      
      - Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setBatchSize(batch: Int): GenericLogRegClassifierApproach.this.type
      
      
      Batch size Batch size - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDatasetInfo(value: String): GenericLogRegClassifierApproach.this.type
      
      
      set descriptive information about the dataset being used set descriptive information about the dataset being used - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault(paramPairs: ParamPair[_]*): GenericLogRegClassifierApproach.this.type
      
      
      - Attributes
- protected
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setDefault[T](param: Param[T], value: T): GenericLogRegClassifierApproach.this.type
      
      
      - Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDoExceptionHandling(value: Boolean): GenericLogRegClassifierApproach.this.type
      
      
      If true, exceptions are handled. If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty. - Definition Classes
- HandleExceptionParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setDropout(dropout: Float): GenericLogRegClassifierApproach.this.type
      
      
      Dropout coefficient Dropout coefficient - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setEpochsNumber(epochs: Int): GenericLogRegClassifierApproach.this.type
      
      
      Maximum number of epochs to train Maximum number of epochs to train - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setFeatureScaling(featureScaling: String): GenericLogRegClassifierApproach.this.type
      
      
      Set the feature scaling method. Set the feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling) - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setFixImbalance(fix: Boolean): GenericLogRegClassifierApproach.this.type
      
      
      Fix imbalance of training set Fix imbalance of training set - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setInputCols(value: String*): GenericLogRegClassifierApproach.this.type
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setInputCols(value: Array[String]): GenericLogRegClassifierApproach.this.type
      
      
      - Definition Classes
- HasInputAnnotationCols
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLabelColumn(column: String): GenericLogRegClassifierApproach.this.type
      
      
      Column with label per each document Column with label per each document - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setLazyAnnotator(value: Boolean): GenericLogRegClassifierApproach.this.type
      
      
      - Definition Classes
- CanBeLazy
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setModelFile(modelFile: String): GenericLogRegClassifierApproach.this.type
      
      
      Set the model file name Set the model file name - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setMultiClass(value: Boolean): GenericLogRegClassifierApproach.this.type
      
      
      Sets the model in multi class prediction mode Sets the model in multi class prediction mode - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        setOutputCol(value: String): GenericLogRegClassifierApproach.this.type
      
      
      - Definition Classes
- HasOutputAnnotationCol
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setOutputLogsPath(outputLogsPath: String): GenericLogRegClassifierApproach.this.type
      
      
      Set the output log path Set the output log path - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setValidationSplit(validationSplit: Float): GenericLogRegClassifierApproach.this.type
      
      
      Choose the proportion of training dataset to be validated against the model on each Epoch. Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off. - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        setlearningRate(lr: Float): GenericLogRegClassifierApproach.this.type
      
      
      Learning Rate Learning Rate - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      - Definition Classes
- AnyRef
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      - Definition Classes
- Identifiable → AnyRef → Any
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): GenericLogRegClassifierModel
      
      
      - Definition Classes
- GenericLogRegClassifierApproach → GenericClassifierApproach → AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        transformSchema(schema: StructType): StructType
      
      
      - Definition Classes
- AnnotatorApproach → PipelineStage
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        transformSchema(schema: StructType, logging: Boolean): StructType
      
      
      - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        uid: String
      
      
      - Definition Classes
- GenericLogRegClassifierApproach → GenericClassifierApproach → Identifiable
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        validate(schema: StructType): Boolean
      
      
      - Attributes
- protected
- Definition Classes
- AnnotatorApproach
 
- 
      
      
      
        
      
    
      
        
        val
      
      
        validationSplit: FloatParam
      
      
      The proportion of training dataset to be used as validation set. The proportion of training dataset to be used as validation set. The model will be validated against this dataset on each Epoch and will not be used for training. The value should be between 0.0 and 1.0. - Definition Classes
- GenericClassifierParams
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... )
 
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      - Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
 
- 
      
      
      
        
      
    
      
        
        def
      
      
        write: MLWriter
      
      
      - Definition Classes
- DefaultParamsWritable → MLWritable
 
Inherited from GenericLogRegClassifierApproach
Inherited from GenericClassifierApproach
Inherited from CheckLicense
Inherited from HandleExceptionParams
Inherited from GenericClassifierParams
Inherited from AnnotatorApproach[GenericClassifierModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[GenericClassifierModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
Annotator types
Required input and expected output annotator types