class FewShotAssertionClassifierModel extends GenericClassifierModel with HasStorageRef with WriteOnnxModel

FewShotAssertionClassifierModel does assertion classification using can run large (LLMS based) few shot classifiers based on the SetFit approach.

Example

Define pipeline stages to prepare the data

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentenceDetector = new SentenceDetector()
   .setInputCols(Array("document"))
   .setOutputCol("sentences")

val tokenizer = Tokenizer()
   .setInputCols(Array("sentence"))
   .setOutputCol("token")

val embeddings = WordEmbeddingsModel
   .pretrained("embeddings_clinical", "en", "clinical/models")
   .setInputCols(Array("sentence", "token"))
   .setOutputCol("embeddings")
   .setCaseSensitive(False)

val ner = MedicalNerModel
   .pretrained("ner_jsl", "en", "clinical/models")
   .setInputCols(["sentence", "token", "embeddings"])
   .setOutputCol("ner")

val nerConverter = NerConverter()
   .setInputCols(Array("sentence", "token", "ner"))
   .setWhiteList("Disease_Syndrome_Disorder", "Hypertension")
   .setOutputCol("ner_chunk")

 val fewShotAssertionClassifier = LargeFewShotClassifierModel
   .pretrained("clinical_assertion")
   .setInputCols(Array("sentence"))
   .setBatchSize(1)
   .setOutputCol("label")

 val pipeline = new Pipeline().setStages(Array(
  documentAssembler, sentenceDetector, tokenizer, embeddings, ner, nerConverter, fewShotAssertionClassifier))

 val model = pipeline.fit(Seq().toDS.toDF("text"))
 val results = model.transform(
   Seq("Includes hypertension and chronic obstructive pulmonary disease.").toDS.toDF("text"))

 results
   .selectExpr("explode(assertion) as assertion")
   .selectExpr("assertion.result", "assertion.metadata.chunk", "assertion.metadata.confidence")
   .show(truncate = false)
+-------+-------------------------------------+----------+
|result |chunk                                |confidence|
+-------+-------------------------------------+----------+
|present|hypertension                         |1.0       |
|present|chronic obstructive pulmonary disease|1.0       |
|absent |arteriovenous malformations          |1.0       |
|absent |vascular malformation                |0.9999997 |
+-------+-------------------------------------+----------+
See also

LargeFewShotClassifierModel for instantiated models

https://arxiv.org/abs/2209.11055 for details about the SetFit approach

Linear Supertypes
WriteOnnxModel, GenericClassifierModel, CheckLicense, HasSafeAnnotate[GenericClassifierModel], HandleExceptionParams, HasSimpleAnnotate[GenericClassifierModel], WriteTensorflowModel, HasStorageRef, GenericClassifierParams, AnnotatorModel[GenericClassifierModel], CanBeLazy, RawAnnotator[GenericClassifierModel], HasOutputAnnotationCol, HasInputAnnotationCols, HasOutputAnnotatorType, ParamsAndFeaturesWritable, HasFeatures, DefaultParamsWritable, MLWritable, Model[GenericClassifierModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. FewShotAssertionClassifierModel
  2. WriteOnnxModel
  3. GenericClassifierModel
  4. CheckLicense
  5. HasSafeAnnotate
  6. HandleExceptionParams
  7. HasSimpleAnnotate
  8. WriteTensorflowModel
  9. HasStorageRef
  10. GenericClassifierParams
  11. AnnotatorModel
  12. CanBeLazy
  13. RawAnnotator
  14. HasOutputAnnotationCol
  15. HasInputAnnotationCols
  16. HasOutputAnnotatorType
  17. ParamsAndFeaturesWritable
  18. HasFeatures
  19. DefaultParamsWritable
  20. MLWritable
  21. Model
  22. Transformer
  23. PipelineStage
  24. Logging
  25. Params
  26. Serializable
  27. Serializable
  28. Identifiable
  29. AnyRef
  30. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new FewShotAssertionClassifierModel()
  2. new FewShotAssertionClassifierModel(uid: String)

    uid

    a unique identifier for the instantiated AnnotatorModel

Type Members

  1. type AnnotationContent = Seq[Row]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → HasSimpleAnnotate
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. val batchSize: IntParam

    Batch size

    Batch size

    Definition Classes
    GenericClassifierParams
  14. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → AnnotatorModel
  15. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  16. def checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String]): Unit
    Definition Classes
    CheckLicense
  17. def checkValidScope(scope: String): Unit
    Definition Classes
    CheckLicense
  18. def checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  19. def checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  20. val classes: StringArrayParam
    Definition Classes
    GenericClassifierModel
  21. final def clear(param: Param[_]): FewShotAssertionClassifierModel.this.type
    Definition Classes
    Params
  22. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  23. def copy(extra: ParamMap): GenericClassifierModel
    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  24. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  25. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  26. val datasetInfo: Param[String]

    Descriptive information about the dataset being used.

    Descriptive information about the dataset being used.

    Definition Classes
    GenericClassifierParams
  27. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  28. def dfAnnotate: UserDefinedFunction
    Definition Classes
    HasSimpleAnnotate
  29. val doExceptionHandling: BooleanParam

    If true, exceptions are handled.

    If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.

    Definition Classes
    HandleExceptionParams
  30. val dropout: FloatParam

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    GenericClassifierParams
  31. val epochsN: IntParam

    Maximum number of epochs to train

    Maximum number of epochs to train

    Definition Classes
    GenericClassifierParams
  32. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  33. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  34. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  35. def explainParams(): String
    Definition Classes
    Params
  36. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  37. def extraValidateMsg: String
    Attributes
    protected
    Definition Classes
    RawAnnotator
  38. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  39. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  40. val featureScaling: Param[String]

    Feature scaling method.

    Feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling)

    Definition Classes
    GenericClassifierParams
  41. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  42. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  43. val fixImbalance: BooleanParam

    Fix the imbalance in the training set by replicating examples of under represented categories

    Fix the imbalance in the training set by replicating examples of under represented categories

    Definition Classes
    GenericClassifierParams
  44. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  45. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  46. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  47. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  48. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  49. def getBatchSize: Int

    Batch size

    Batch size

    Definition Classes
    GenericClassifierParams
  50. def getCategories(): Array[String]
    Definition Classes
    GenericClassifierModel
  51. def getCategoryName(id: Int): String
    Definition Classes
    GenericClassifierModel
  52. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  53. def getClasses: Array[String]

    Returns labels used to train this model

  54. def getDatasetInfo: String

    get descriptive information about the dataset being used

    get descriptive information about the dataset being used

    Definition Classes
    GenericClassifierParams
  55. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  56. def getDropout: Float

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    GenericClassifierParams
  57. def getEncoder: GenericClassifierDataEncoder
    Definition Classes
    GenericClassifierModel
  58. def getFeatureScaling: String

    Get feature scaling method

    Get feature scaling method

    Definition Classes
    GenericClassifierParams
  59. def getFixImbalance: Boolean

    Fix imbalance in training set

    Fix imbalance in training set

    Definition Classes
    GenericClassifierParams
  60. def getHasDifferentiableHead: Boolean

    Whether the model has a differentiable head or not

  61. def getInputCols: Array[String]
    Definition Classes
    HasInputAnnotationCols
  62. def getIsTrainable: Boolean
  63. def getLabelColumn: String

    Column with label per each document

    Column with label per each document

    Definition Classes
    GenericClassifierParams
  64. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  65. def getLearningRate: Float

    Learning Rate

    Learning Rate

    Definition Classes
    GenericClassifierParams
  66. def getLicenseScopes: Seq[String]
    Attributes
    protected
  67. def getMaxEpochs: Int

    Maximum number of epochs to train

    Maximum number of epochs to train

    Definition Classes
    GenericClassifierParams
  68. def getModelFile: String

    Model file name

    Model file name

    Definition Classes
    GenericClassifierParams
  69. def getMultiClass: Boolean

    Gets the model multi class prediction mode

    Gets the model multi class prediction mode

    Definition Classes
    GenericClassifierParams
  70. def getOnnxModel: Option[OnnxSetFitClassifierHead]
  71. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  72. final def getOutputCol: String
    Definition Classes
    HasOutputAnnotationCol
  73. def getOutputLogsPath: String

    Get output logs path

    Get output logs path

    Definition Classes
    GenericClassifierParams
  74. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  75. def getStorageRef: String
    Definition Classes
    HasStorageRef
  76. def getValidationSplit: Float

    Choose the proportion of training dataset to be validated against the model on each Epoch.

    Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    GenericClassifierParams
  77. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  78. val hasDifferentiableHead: BooleanParam

    Whether the model has a differentiable head or not

  79. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  80. def hasParent: Boolean
    Definition Classes
    Model
  81. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  82. val inExceptionMode: Boolean
    Attributes
    protected
    Definition Classes
    HasSafeAnnotate
  83. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  84. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  85. val inputAnnotatorTypes: Array[AnnotatorType]

    Input annotator types : DOCUMENT, CHUNK

    Input annotator types : DOCUMENT, CHUNK

    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → HasInputAnnotationCols
  86. final val inputCols: StringArrayParam
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  87. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  88. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  89. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  90. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  91. val isTrainable: BooleanParam
  92. val labelColumn: Param[String]

    Column with label per each document

    Column with label per each document

    Definition Classes
    GenericClassifierParams
  93. val labels: MapFeature[Int, String]

    Labels used to decode predicted IDs back to string tags

  94. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  95. val learningRate: FloatParam

    Learning Rate

    Learning Rate

    Definition Classes
    GenericClassifierParams
  96. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  97. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  98. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  99. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  100. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  101. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  102. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  103. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  104. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  105. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  106. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  107. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  108. def model: TensorflowGenericClassifier
    Definition Classes
    GenericClassifierModel
  109. val modelFile: Param[String]

    Location of file of the model used for classification

    Location of file of the model used for classification

    Definition Classes
    GenericClassifierParams
  110. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  111. val multiClass: BooleanParam

    If multiClass is set, the model will return all the labels with corresponding scores.

    If multiClass is set, the model will return all the labels with corresponding scores. By default, multiClass is false.

    Definition Classes
    GenericClassifierParams
  112. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  113. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  114. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  115. def onWrite(path: String, spark: SparkSession): Unit
    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → ParamsAndFeaturesWritable
  116. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  117. val outputAnnotatorType: AnnotatorType

    Output Annotator Types: WORD_EMBEDDINGS

    Output Annotator Types: WORD_EMBEDDINGS

    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → HasOutputAnnotatorType
  118. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  119. val outputLogsPath: Param[String]

    Folder path to save training logs.

    Folder path to save training logs. If no path is specified, the logs won't be stored in disk. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    Definition Classes
    GenericClassifierParams
  120. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  121. var parent: Estimator[GenericClassifierModel]
    Definition Classes
    Model
  122. def safeAnnotate(annotations: Seq[Annotation]): Seq[Annotation]

    A protected method designed to safely annotate a sequence of Annotation objects by handling exceptions.

    A protected method designed to safely annotate a sequence of Annotation objects by handling exceptions.

    annotations

    A sequence of Annotation.

    returns

    A sequence of Annotation objects after processing, potentially containing error annotations.

    Attributes
    protected
    Definition Classes
    HasSafeAnnotate
  123. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  124. def scaleFeatures(features: Array[Array[Float]]): Array[Array[Float]]
    Attributes
    protected
    Definition Classes
    GenericClassifierModel
  125. def set[T](feature: StructFeature[T], value: T): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  126. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  127. def set[T](feature: SetFeature[T], value: Set[T]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  128. def set[T](feature: ArrayFeature[T], value: Array[T]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  129. final def set(paramPair: ParamPair[_]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  130. final def set(param: String, value: Any): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  131. final def set[T](param: Param[T], value: T): FewShotAssertionClassifierModel.this.type
    Definition Classes
    Params
  132. def setBatchSize(batch: Int): FewShotAssertionClassifierModel.this.type

    Batch size

    Batch size

    Definition Classes
    GenericClassifierParams
  133. def setCategoryNames(categoryNames: Array[String]): FewShotAssertionClassifierModel.this.type
    Definition Classes
    GenericClassifierModel
  134. def setDatasetInfo(value: String): FewShotAssertionClassifierModel.this.type

    set descriptive information about the dataset being used

    set descriptive information about the dataset being used

    Definition Classes
    GenericClassifierParams
  135. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  136. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  137. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  138. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  139. final def setDefault(paramPairs: ParamPair[_]*): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  140. final def setDefault[T](param: Param[T], value: T): FewShotAssertionClassifierModel.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  141. def setDoExceptionHandling(value: Boolean): FewShotAssertionClassifierModel.this.type

    If true, exceptions are handled.

    If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.

    Definition Classes
    HandleExceptionParams
  142. def setDropout(dropout: Float): FewShotAssertionClassifierModel.this.type

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    GenericClassifierParams
  143. def setEncoder(encoder: GenericClassifierDataEncoder): FewShotAssertionClassifierModel.this.type
    Definition Classes
    GenericClassifierModel
  144. def setEpochsNumber(epochs: Int): FewShotAssertionClassifierModel.this.type

    Maximum number of epochs to train

    Maximum number of epochs to train

    Definition Classes
    GenericClassifierParams
  145. def setFeatureScaling(featureScaling: String): FewShotAssertionClassifierModel.this.type

    Set the feature scaling method.

    Set the feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling)

    Definition Classes
    GenericClassifierParams
  146. def setFixImbalance(fix: Boolean): FewShotAssertionClassifierModel.this.type

    Fix imbalance of training set

    Fix imbalance of training set

    Definition Classes
    GenericClassifierParams
  147. def setHasDifferentiableHead(value: Boolean): FewShotAssertionClassifierModel.this.type

    Whether the model has a differentiable head or not

  148. final def setInputCols(value: String*): FewShotAssertionClassifierModel.this.type
    Definition Classes
    HasInputAnnotationCols
  149. def setInputCols(value: Array[String]): FewShotAssertionClassifierModel.this.type
    Definition Classes
    HasInputAnnotationCols
  150. def setIsTrainable(value: Boolean): FewShotAssertionClassifierModel.this.type
  151. def setLabelColumn(column: String): FewShotAssertionClassifierModel.this.type

    Column with label per each document

    Column with label per each document

    Definition Classes
    GenericClassifierParams
  152. def setLabels(value: Map[Int, String]): FewShotAssertionClassifierModel.this.type

  153. def setLazyAnnotator(value: Boolean): FewShotAssertionClassifierModel.this.type
    Definition Classes
    CanBeLazy
  154. def setModelFile(modelFile: String): FewShotAssertionClassifierModel.this.type

    Set the model file name

    Set the model file name

    Definition Classes
    GenericClassifierParams
  155. def setMultiClass(value: Boolean): FewShotAssertionClassifierModel.this.type

    Sets the model in multi class prediction mode

    Sets the model in multi class prediction mode

    Definition Classes
    GenericClassifierParams
  156. def setOnnxModelIfNotSet(spark: SparkSession, classifierOnnxWrapper: OnnxWrapper): FewShotAssertionClassifierModel.this.type
  157. final def setOutputCol(value: String): FewShotAssertionClassifierModel.this.type
    Definition Classes
    HasOutputAnnotationCol
  158. def setOutputLogsPath(outputLogsPath: String): FewShotAssertionClassifierModel.this.type

    Set the output log path

    Set the output log path

    Definition Classes
    GenericClassifierParams
  159. def setParent(parent: Estimator[GenericClassifierModel]): GenericClassifierModel
    Definition Classes
    Model
  160. def setStorageRef(value: String): FewShotAssertionClassifierModel.this.type
    Definition Classes
    HasStorageRef
  161. def setTensorflowModel(spark: SparkSession, tf: TensorflowWrapper): FewShotAssertionClassifierModel.this.type
    Definition Classes
    GenericClassifierModel
  162. def setValidationSplit(validationSplit: Float): FewShotAssertionClassifierModel.this.type

    Choose the proportion of training dataset to be validated against the model on each Epoch.

    Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    GenericClassifierParams
  163. def setlearningRate(lr: Float): FewShotAssertionClassifierModel.this.type

    Learning Rate

    Learning Rate

    Definition Classes
    GenericClassifierParams
  164. val storageRef: Param[String]
    Definition Classes
    HasStorageRef
  165. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  166. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  167. final def transform(dataset: Dataset[_]): DataFrame
    Definition Classes
    AnnotatorModel → Transformer
  168. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  169. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  170. final def transformSchema(schema: StructType): StructType
    Definition Classes
    RawAnnotator → PipelineStage
  171. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  172. val uid: String
    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → Identifiable
  173. def validate(schema: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  174. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  175. val validationSplit: FloatParam

    The proportion of training dataset to be used as validation set.

    The proportion of training dataset to be used as validation set.

    The model will be validated against this dataset on each Epoch and will not be used for training. The value should be between 0.0 and 1.0.

    Definition Classes
    GenericClassifierParams
  176. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  177. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  178. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  179. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  180. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  181. def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
    Definition Classes
    WriteOnnxModel
  182. def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
    Definition Classes
    WriteOnnxModel
  183. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String): Unit
    Definition Classes
    WriteTensorflowModel
  184. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]]): Unit
    Definition Classes
    WriteTensorflowModel
  185. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]], savedSignatures: Option[Map[String, String]]): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from WriteOnnxModel

Inherited from GenericClassifierModel

Inherited from CheckLicense

Inherited from HandleExceptionParams

Inherited from HasSimpleAnnotate[GenericClassifierModel]

Inherited from WriteTensorflowModel

Inherited from HasStorageRef

Inherited from GenericClassifierParams

Inherited from AnnotatorModel[GenericClassifierModel]

Inherited from CanBeLazy

Inherited from RawAnnotator[GenericClassifierModel]

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[GenericClassifierModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters