class FewShotAssertionClassifierModel extends GenericClassifierModel with HasStorageRef with WhiteAndBlackListParams with WriteOnnxModel

FewShotAssertionClassifierModel does assertion classification using can run large (LLMS based) few shot classifiers based on the SetFit approach.

Example

Define pipeline stages to prepare the data

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentenceDetector = new SentenceDetector()
   .setInputCols(Array("document"))
   .setOutputCol("sentences")

val tokenizer = Tokenizer()
   .setInputCols(Array("sentence"))
   .setOutputCol("token")

val embeddings = WordEmbeddingsModel
   .pretrained("embeddings_clinical", "en", "clinical/models")
   .setInputCols(Array("sentence", "token"))
   .setOutputCol("embeddings")
   .setCaseSensitive(False)

val ner = MedicalNerModel
   .pretrained("ner_jsl", "en", "clinical/models")
   .setInputCols(["sentence", "token", "embeddings"])
   .setOutputCol("ner")

val nerConverter = NerConverter()
   .setInputCols(Array("sentence", "token", "ner"))
   .setWhiteList("Disease_Syndrome_Disorder", "Hypertension")
   .setOutputCol("ner_chunk")

 val fewShotAssertionClassifier = LargeFewShotClassifierModel
   .pretrained("clinical_assertion")
   .setInputCols(Array("sentence"))
   .setBatchSize(1)
   .setOutputCol("label")

 val pipeline = new Pipeline().setStages(Array(
  documentAssembler, sentenceDetector, tokenizer, embeddings, ner, nerConverter, fewShotAssertionClassifier))

 val model = pipeline.fit(Seq().toDS.toDF("text"))
 val results = model.transform(
   Seq("Includes hypertension and chronic obstructive pulmonary disease.").toDS.toDF("text"))

 results
   .selectExpr("explode(assertion) as assertion")
   .selectExpr("assertion.result", "assertion.metadata.chunk", "assertion.metadata.confidence")
   .show(truncate = false)
+-------+-------------------------------------+----------+
|result |chunk                                |confidence|
+-------+-------------------------------------+----------+
|present|hypertension                         |1.0       |
|present|chronic obstructive pulmonary disease|1.0       |
|absent |arteriovenous malformations          |1.0       |
|absent |vascular malformation                |0.9999997 |
+-------+-------------------------------------+----------+
See also

LargeFewShotClassifierModel for instantiated models

https://arxiv.org/abs/2209.11055 for details about the SetFit approach

Linear Supertypes
WriteOnnxModel, WhiteAndBlackListParams, GenericClassifierModel, CheckLicense, HasSafeAnnotate[GenericClassifierModel], HandleExceptionParams, HasSimpleAnnotate[GenericClassifierModel], WriteTensorflowModel, HasStorageRef, GenericClassifierParams, AnnotatorModel[GenericClassifierModel], CanBeLazy, RawAnnotator[GenericClassifierModel], HasOutputAnnotationCol, HasInputAnnotationCols, HasOutputAnnotatorType, ParamsAndFeaturesWritable, HasFeatures, DefaultParamsWritable, MLWritable, Model[GenericClassifierModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. FewShotAssertionClassifierModel
  2. WriteOnnxModel
  3. WhiteAndBlackListParams
  4. GenericClassifierModel
  5. CheckLicense
  6. HasSafeAnnotate
  7. HandleExceptionParams
  8. HasSimpleAnnotate
  9. WriteTensorflowModel
  10. HasStorageRef
  11. GenericClassifierParams
  12. AnnotatorModel
  13. CanBeLazy
  14. RawAnnotator
  15. HasOutputAnnotationCol
  16. HasInputAnnotationCols
  17. HasOutputAnnotatorType
  18. ParamsAndFeaturesWritable
  19. HasFeatures
  20. DefaultParamsWritable
  21. MLWritable
  22. Model
  23. Transformer
  24. PipelineStage
  25. Logging
  26. Params
  27. Serializable
  28. Serializable
  29. Identifiable
  30. AnyRef
  31. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new FewShotAssertionClassifierModel()
  2. new FewShotAssertionClassifierModel(uid: String)

    uid

    a unique identifier for the instantiated AnnotatorModel

Type Members

  1. type AnnotationContent = Seq[Row]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  11. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → HasSimpleAnnotate
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. val batchSize: IntParam

    Batch size

    Batch size

    Definition Classes
    GenericClassifierParams
  14. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → AnnotatorModel
  15. val blackList: StringArrayParam

    If defined, list of entities to ignore.

    If defined, list of entities to ignore. The rest will be processed. Should not include IOB prefix on labels. Default: Array()

    Definition Classes
    WhiteAndBlackListParams
  16. val caseSensitive: BooleanParam

    Determines whether the definitions of the white listed and black listed entities are case sensitive or not.

    Determines whether the definitions of the white listed and black listed entities are case sensitive or not. Default: true

    Definition Classes
    WhiteAndBlackListParams
  17. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  18. def checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String]): Unit
    Definition Classes
    CheckLicense
  19. def checkValidScope(scope: String): Unit
    Definition Classes
    CheckLicense
  20. def checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  21. def checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  22. val classes: StringArrayParam
    Definition Classes
    GenericClassifierModel
  23. final def clear(param: Param[_]): FewShotAssertionClassifierModel.this.type
    Definition Classes
    Params
  24. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  25. def copy(extra: ParamMap): GenericClassifierModel
    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  26. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  27. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  28. val datasetInfo: Param[String]

    Descriptive information about the dataset being used.

    Descriptive information about the dataset being used.

    Definition Classes
    GenericClassifierParams
  29. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  30. def dfAnnotate: UserDefinedFunction
    Definition Classes
    HasSimpleAnnotate
  31. val doExceptionHandling: BooleanParam

    If true, exceptions are handled.

    If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.

    Definition Classes
    HandleExceptionParams
  32. val dropout: FloatParam

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    GenericClassifierParams
  33. val epochsN: IntParam

    Maximum number of epochs to train

    Maximum number of epochs to train

    Definition Classes
    GenericClassifierParams
  34. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  35. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  36. def evaluateFilter(filter: String): Boolean

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param.

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  37. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  38. def explainParams(): String
    Definition Classes
    Params
  39. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  40. def extraValidateMsg: String
    Attributes
    protected
    Definition Classes
    RawAnnotator
  41. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  42. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  43. val featureScaling: Param[String]

    Feature scaling method.

    Feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling)

    Definition Classes
    GenericClassifierParams
  44. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  45. def filterByEntityField(annotation: Annotation): Boolean

    Filter annotation by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotation by blackList and whiteList, taking into account the caseSensitive param. It filters by annotation.metadata.getOrElse("entity", annotation.metadata.getOrElse("identifier", "")).toString

    returns

    Boolean

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  46. def filterByEntityField(annotations: Seq[Annotation]): Seq[Annotation]

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param. It filters by annotation.metadata.getOrElse("entity", annotation.metadata.getOrElse("identifier", "")).toString

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  47. def filterByWhiteAndBlackList(annotation: Annotation): Boolean

    Filter annotation by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotation by blackList and whiteList, taking into account the caseSensitive param. It filters by annotation.result

    returns

    Boolean

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  48. def filterByWhiteAndBlackList(annotations: Seq[Annotation]): Seq[Annotation]

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param. It filters by annotation.result

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  49. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  50. val fixImbalance: BooleanParam

    Fix the imbalance in the training set by replicating examples of under represented categories

    Fix the imbalance in the training set by replicating examples of under represented categories

    Definition Classes
    GenericClassifierParams
  51. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  52. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  53. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  54. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  55. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  56. def getBatchSize: Int

    Batch size

    Batch size

    Definition Classes
    GenericClassifierParams
  57. def getBlackList: Array[String]

    Gets blackList param

    Gets blackList param

    Definition Classes
    WhiteAndBlackListParams
  58. def getCaseSensitive: Boolean

    Gets caseSensitive param

    Gets caseSensitive param

    Definition Classes
    WhiteAndBlackListParams
  59. def getCategories(): Array[String]
    Definition Classes
    GenericClassifierModel
  60. def getCategoryName(id: Int): String
    Definition Classes
    GenericClassifierModel
  61. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  62. def getClasses: Array[String]

    Returns labels used to train this model

  63. def getDatasetInfo: String

    get descriptive information about the dataset being used

    get descriptive information about the dataset being used

    Definition Classes
    GenericClassifierParams
  64. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  65. def getDropout: Float

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    GenericClassifierParams
  66. def getEncoder: GenericClassifierDataEncoder
    Definition Classes
    GenericClassifierModel
  67. def getFeatureScaling: String

    Get feature scaling method

    Get feature scaling method

    Definition Classes
    GenericClassifierParams
  68. def getFixImbalance: Boolean

    Fix imbalance in training set

    Fix imbalance in training set

    Definition Classes
    GenericClassifierParams
  69. def getHasDifferentiableHead: Boolean

    Whether the model has a differentiable head or not

  70. def getInputCols: Array[String]
    Definition Classes
    HasInputAnnotationCols
  71. def getIsTrainable: Boolean
  72. def getLabelColumn: String

    Column with label per each document

    Column with label per each document

    Definition Classes
    GenericClassifierParams
  73. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  74. def getLearningRate: Float

    Learning Rate

    Learning Rate

    Definition Classes
    GenericClassifierParams
  75. def getLicenseScopes: Seq[String]
    Attributes
    protected
  76. def getMaxEpochs: Int

    Maximum number of epochs to train

    Maximum number of epochs to train

    Definition Classes
    GenericClassifierParams
  77. def getModelFile: String

    Model file name

    Model file name

    Definition Classes
    GenericClassifierParams
  78. def getMultiClass: Boolean

    Gets the model multi class prediction mode

    Gets the model multi class prediction mode

    Definition Classes
    GenericClassifierParams
  79. def getOnnxModel: Option[OnnxSetFitClassifierHead]
  80. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  81. final def getOutputCol: String
    Definition Classes
    HasOutputAnnotationCol
  82. def getOutputLogsPath: String

    Get output logs path

    Get output logs path

    Definition Classes
    GenericClassifierParams
  83. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  84. def getStorageRef: String
    Definition Classes
    HasStorageRef
  85. def getValidationSplit: Float

    Choose the proportion of training dataset to be validated against the model on each Epoch.

    Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    GenericClassifierParams
  86. def getWhiteList: Array[String]

    Gets whiteList param

    Gets whiteList param

    Definition Classes
    WhiteAndBlackListParams
  87. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  88. val hasDifferentiableHead: BooleanParam

    Whether the model has a differentiable head or not

  89. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  90. def hasParent: Boolean
    Definition Classes
    Model
  91. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  92. val inExceptionMode: Boolean
    Attributes
    protected
    Definition Classes
    HasSafeAnnotate
  93. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  94. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  95. val inputAnnotatorTypes: Array[AnnotatorType]

    Input annotator types : DOCUMENT, CHUNK

    Input annotator types : DOCUMENT, CHUNK

    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → HasInputAnnotationCols
  96. final val inputCols: StringArrayParam
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  97. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  98. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  99. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  100. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  101. val isTrainable: BooleanParam
  102. def isValueInList(value: String, list: Array[String]): Boolean
    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  103. def isWhiteListAndBlacklistEmpty: Boolean
    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  104. val labelColumn: Param[String]

    Column with label per each document

    Column with label per each document

    Definition Classes
    GenericClassifierParams
  105. val labels: MapFeature[Int, String]

    Labels used to decode predicted IDs back to string tags

  106. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  107. val learningRate: FloatParam

    Learning Rate

    Learning Rate

    Definition Classes
    GenericClassifierParams
  108. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  109. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  110. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  111. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  112. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  113. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  114. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  115. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  116. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  117. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  118. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  119. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  120. def model: TensorflowGenericClassifier
    Definition Classes
    GenericClassifierModel
  121. val modelFile: Param[String]

    Location of file of the model used for classification

    Location of file of the model used for classification

    Definition Classes
    GenericClassifierParams
  122. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  123. val multiClass: BooleanParam

    If multiClass is set, the model will return all the labels with corresponding scores.

    If multiClass is set, the model will return all the labels with corresponding scores. By default, multiClass is false.

    Definition Classes
    GenericClassifierParams
  124. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  125. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  126. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  127. def onWrite(path: String, spark: SparkSession): Unit
    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → ParamsAndFeaturesWritable
  128. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  129. val outputAnnotatorType: AnnotatorType

    Output Annotator Types: WORD_EMBEDDINGS

    Output Annotator Types: WORD_EMBEDDINGS

    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → HasOutputAnnotatorType
  130. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  131. val outputLogsPath: Param[String]

    Folder path to save training logs.

    Folder path to save training logs. If no path is specified, the logs won't be stored in disk. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    Definition Classes
    GenericClassifierParams
  132. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  133. var parent: Estimator[GenericClassifierModel]
    Definition Classes
    Model
  134. def safeAnnotate(annotations: Seq[Annotation]): Seq[Annotation]

    A protected method designed to safely annotate a sequence of Annotation objects by handling exceptions.

    A protected method designed to safely annotate a sequence of Annotation objects by handling exceptions.

    annotations

    A sequence of Annotation.

    returns

    A sequence of Annotation objects after processing, potentially containing error annotations.

    Attributes
    protected
    Definition Classes
    HasSafeAnnotate
  135. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  136. def scaleFeatures(features: Array[Array[Float]]): Array[Array[Float]]
    Attributes
    protected
    Definition Classes
    GenericClassifierModel
  137. def set[T](feature: StructFeature[T], value: T): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  138. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  139. def set[T](feature: SetFeature[T], value: Set[T]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  140. def set[T](feature: ArrayFeature[T], value: Array[T]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  141. final def set(paramPair: ParamPair[_]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  142. final def set(param: String, value: Any): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  143. final def set[T](param: Param[T], value: T): FewShotAssertionClassifierModel.this.type
    Definition Classes
    Params
  144. def setAllowList(list: String*): FewShotAssertionClassifierModel.this.type
    Definition Classes
    WhiteAndBlackListParams
  145. def setAllowList(list: Array[String]): FewShotAssertionClassifierModel.this.type
    Definition Classes
    WhiteAndBlackListParams
  146. def setBatchSize(batch: Int): FewShotAssertionClassifierModel.this.type

    Batch size

    Batch size

    Definition Classes
    GenericClassifierParams
  147. def setBlackList(list: String*): FewShotAssertionClassifierModel.this.type
    Definition Classes
    WhiteAndBlackListParams
  148. def setBlackList(list: Array[String]): FewShotAssertionClassifierModel.this.type

    If defined, list of entities to ignore.

    If defined, list of entities to ignore. The rest will be processed. Should not include IOB prefix on labels. Default: Array()

    Definition Classes
    WhiteAndBlackListParams
  149. def setCaseSensitive(value: Boolean): FewShotAssertionClassifierModel.this.type

    Determines whether the definitions of the white listed and black listed entities are case sensitive or not.

    Determines whether the definitions of the white listed and black listed entities are case sensitive or not. Default: true

    Definition Classes
    WhiteAndBlackListParams
  150. def setCategoryNames(categoryNames: Array[String]): FewShotAssertionClassifierModel.this.type
    Definition Classes
    GenericClassifierModel
  151. def setDatasetInfo(value: String): FewShotAssertionClassifierModel.this.type

    set descriptive information about the dataset being used

    set descriptive information about the dataset being used

    Definition Classes
    GenericClassifierParams
  152. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  153. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  154. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  155. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  156. final def setDefault(paramPairs: ParamPair[_]*): FewShotAssertionClassifierModel.this.type
    Attributes
    protected
    Definition Classes
    Params
  157. final def setDefault[T](param: Param[T], value: T): FewShotAssertionClassifierModel.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  158. def setDenyList(list: String*): FewShotAssertionClassifierModel.this.type
    Definition Classes
    WhiteAndBlackListParams
  159. def setDenyList(list: Array[String]): FewShotAssertionClassifierModel.this.type
    Definition Classes
    WhiteAndBlackListParams
  160. def setDoExceptionHandling(value: Boolean): FewShotAssertionClassifierModel.this.type

    If true, exceptions are handled.

    If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.

    Definition Classes
    HandleExceptionParams
  161. def setDropout(dropout: Float): FewShotAssertionClassifierModel.this.type

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    GenericClassifierParams
  162. def setEncoder(encoder: GenericClassifierDataEncoder): FewShotAssertionClassifierModel.this.type
    Definition Classes
    GenericClassifierModel
  163. def setEpochsNumber(epochs: Int): FewShotAssertionClassifierModel.this.type

    Maximum number of epochs to train

    Maximum number of epochs to train

    Definition Classes
    GenericClassifierParams
  164. def setFeatureScaling(featureScaling: String): FewShotAssertionClassifierModel.this.type

    Set the feature scaling method.

    Set the feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling)

    Definition Classes
    GenericClassifierParams
  165. def setFixImbalance(fix: Boolean): FewShotAssertionClassifierModel.this.type

    Fix imbalance of training set

    Fix imbalance of training set

    Definition Classes
    GenericClassifierParams
  166. def setHasDifferentiableHead(value: Boolean): FewShotAssertionClassifierModel.this.type

    Whether the model has a differentiable head or not

  167. final def setInputCols(value: String*): FewShotAssertionClassifierModel.this.type
    Definition Classes
    HasInputAnnotationCols
  168. def setInputCols(value: Array[String]): FewShotAssertionClassifierModel.this.type
    Definition Classes
    HasInputAnnotationCols
  169. def setIsTrainable(value: Boolean): FewShotAssertionClassifierModel.this.type
  170. def setLabelColumn(column: String): FewShotAssertionClassifierModel.this.type

    Column with label per each document

    Column with label per each document

    Definition Classes
    GenericClassifierParams
  171. def setLabels(value: Map[Int, String]): FewShotAssertionClassifierModel.this.type

  172. def setLazyAnnotator(value: Boolean): FewShotAssertionClassifierModel.this.type
    Definition Classes
    CanBeLazy
  173. def setModelFile(modelFile: String): FewShotAssertionClassifierModel.this.type

    Set the model file name

    Set the model file name

    Definition Classes
    GenericClassifierParams
  174. def setMultiClass(value: Boolean): FewShotAssertionClassifierModel.this.type

    Sets the model in multi class prediction mode

    Sets the model in multi class prediction mode

    Definition Classes
    GenericClassifierParams
  175. def setOnnxModelIfNotSet(spark: SparkSession, classifierOnnxWrapper: OnnxWrapper): FewShotAssertionClassifierModel.this.type
  176. final def setOutputCol(value: String): FewShotAssertionClassifierModel.this.type
    Definition Classes
    HasOutputAnnotationCol
  177. def setOutputLogsPath(outputLogsPath: String): FewShotAssertionClassifierModel.this.type

    Set the output log path

    Set the output log path

    Definition Classes
    GenericClassifierParams
  178. def setParent(parent: Estimator[GenericClassifierModel]): GenericClassifierModel
    Definition Classes
    Model
  179. def setStorageRef(value: String): FewShotAssertionClassifierModel.this.type
    Definition Classes
    HasStorageRef
  180. def setTensorflowModel(spark: SparkSession, tf: TensorflowWrapper): FewShotAssertionClassifierModel.this.type
    Definition Classes
    GenericClassifierModel
  181. def setValidationSplit(validationSplit: Float): FewShotAssertionClassifierModel.this.type

    Choose the proportion of training dataset to be validated against the model on each Epoch.

    Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    GenericClassifierParams
  182. def setWhiteList(list: String*): FewShotAssertionClassifierModel.this.type
    Definition Classes
    WhiteAndBlackListParams
  183. def setWhiteList(list: Array[String]): FewShotAssertionClassifierModel.this.type

    Sets the list of entities to process.

    Sets the list of entities to process. The rest will be ignored. Should not include IOB prefix on labels. Default: Array()

    Definition Classes
    WhiteAndBlackListParams
  184. def setlearningRate(lr: Float): FewShotAssertionClassifierModel.this.type

    Learning Rate

    Learning Rate

    Definition Classes
    GenericClassifierParams
  185. val storageRef: Param[String]
    Definition Classes
    HasStorageRef
  186. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  187. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  188. final def transform(dataset: Dataset[_]): DataFrame
    Definition Classes
    AnnotatorModel → Transformer
  189. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  190. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  191. final def transformSchema(schema: StructType): StructType
    Definition Classes
    RawAnnotator → PipelineStage
  192. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  193. val uid: String
    Definition Classes
    FewShotAssertionClassifierModelGenericClassifierModel → Identifiable
  194. def validate(schema: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  195. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  196. val validationSplit: FloatParam

    The proportion of training dataset to be used as validation set.

    The proportion of training dataset to be used as validation set.

    The model will be validated against this dataset on each Epoch and will not be used for training. The value should be between 0.0 and 1.0.

    Definition Classes
    GenericClassifierParams
  197. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  198. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  199. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  200. val whiteList: StringArrayParam

    If defined, list of entities to process.

    If defined, list of entities to process. The rest will be ignored. Should not include IOB prefix on labels. Default: Array()

    Definition Classes
    WhiteAndBlackListParams
  201. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  202. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  203. def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
    Definition Classes
    WriteOnnxModel
  204. def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
    Definition Classes
    WriteOnnxModel
  205. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String): Unit
    Definition Classes
    WriteTensorflowModel
  206. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]]): Unit
    Definition Classes
    WriteTensorflowModel
  207. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]], savedSignatures: Option[Map[String, String]]): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from WriteOnnxModel

Inherited from WhiteAndBlackListParams

Inherited from GenericClassifierModel

Inherited from CheckLicense

Inherited from HandleExceptionParams

Inherited from HasSimpleAnnotate[GenericClassifierModel]

Inherited from WriteTensorflowModel

Inherited from HasStorageRef

Inherited from GenericClassifierParams

Inherited from AnnotatorModel[GenericClassifierModel]

Inherited from CanBeLazy

Inherited from RawAnnotator[GenericClassifierModel]

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[GenericClassifierModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters