object RelationExtractionApproach extends RelationExtractionApproach

Linear Supertypes
RelationExtractionApproach, GenericClassifierApproach, CheckLicense, HandleExceptionParams, GenericClassifierParams, AnnotatorApproach[GenericClassifierModel], CanBeLazy, DefaultParamsWritable, MLWritable, HasOutputAnnotatorType, HasOutputAnnotationCol, HasInputAnnotationCols, Estimator[GenericClassifierModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. RelationExtractionApproach
  2. RelationExtractionApproach
  3. GenericClassifierApproach
  4. CheckLicense
  5. HandleExceptionParams
  6. GenericClassifierParams
  7. AnnotatorApproach
  8. CanBeLazy
  9. DefaultParamsWritable
  10. MLWritable
  11. HasOutputAnnotatorType
  12. HasOutputAnnotationCol
  13. HasInputAnnotationCols
  14. Estimator
  15. PipelineStage
  16. Logging
  17. Params
  18. Serializable
  19. Serializable
  20. Identifiable
  21. AnyRef
  22. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): GenericClassifierModel
    Attributes
    protected
    Definition Classes
    AnnotatorApproach
  6. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  7. val batchSize: IntParam

    Batch size

    Batch size

    Definition Classes
    GenericClassifierParams
  8. def beforeTraining(spark: SparkSession): Unit
    Definition Classes
    GenericClassifierApproach → AnnotatorApproach
  9. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  10. def checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String]): Unit
    Definition Classes
    CheckLicense
  11. def checkValidScope(scope: String): Unit
    Definition Classes
    CheckLicense
  12. def checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  13. def checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  14. final def clear(param: Param[_]): RelationExtractionApproach.this.type
    Definition Classes
    Params
  15. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  16. final def copy(extra: ParamMap): Estimator[GenericClassifierModel]
    Definition Classes
    AnnotatorApproach → Estimator → PipelineStage → Params
  17. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  18. var customLabels: CustomLabels

    Custom relation labels

    Custom relation labels

    Definition Classes
    RelationExtractionApproach
  19. val datasetInfo: Param[String]

    Descriptive information about the dataset being used.

    Descriptive information about the dataset being used.

    Definition Classes
    GenericClassifierParams
  20. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  21. val description: String

    Trains TensorFlow model for multi-class text classification

    Trains TensorFlow model for multi-class text classification

    Definition Classes
    RelationExtractionApproachGenericClassifierApproach → AnnotatorApproach
  22. val directionSensitive: BooleanParam

    If it is true, only relations in the form of "ENTITY1-ENTITY2" will be considered, If it is false, both "ENTITY1-ENTITY2" and "ENTITY2-ENTITY1" relations will be considered,

    If it is true, only relations in the form of "ENTITY1-ENTITY2" will be considered, If it is false, both "ENTITY1-ENTITY2" and "ENTITY2-ENTITY1" relations will be considered,

    Definition Classes
    RelationExtractionApproach
  23. val doExceptionHandling: BooleanParam

    If true, exceptions are handled.

    If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.

    Definition Classes
    HandleExceptionParams
  24. val dropout: FloatParam

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    GenericClassifierParams
  25. val epochsN: IntParam

    Maximum number of epochs to train

    Maximum number of epochs to train

    Definition Classes
    GenericClassifierParams
  26. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  27. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  28. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  29. def explainParams(): String
    Definition Classes
    Params
  30. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  31. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  32. val featureScaling: Param[String]

    Feature scaling method.

    Feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling)

    Definition Classes
    GenericClassifierParams
  33. val filterByTokenDistance: IntParam

    filtering criterion based on number of token between entities.

    filtering criterion based on number of token between entities. Model only finds relations that have fewer than the specified number of tokens between them.

    Definition Classes
    RelationExtractionApproach
  34. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  35. final def fit(dataset: Dataset[_]): GenericClassifierModel
    Definition Classes
    AnnotatorApproach → Estimator
  36. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[GenericClassifierModel]
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  37. def fit(dataset: Dataset[_], paramMap: ParamMap): GenericClassifierModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  38. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): GenericClassifierModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  39. val fixImbalance: BooleanParam

    Fix the imbalance in the training set by replicating examples of under represented categories

    Fix the imbalance in the training set by replicating examples of under represented categories

    Definition Classes
    GenericClassifierParams
  40. val fromEntityBeginCol: Param[String]

    Column for beginning of 'from' entity

    Column for beginning of 'from' entity

    Definition Classes
    RelationExtractionApproach
  41. val fromEntityEndCol: Param[String]

    Column for end of 'from' entity

    Column for end of 'from' entity

    Definition Classes
    RelationExtractionApproach
  42. val fromEntityLabelCol: Param[String]

    Column for 'from' entity label

    Column for 'from' entity label

    Definition Classes
    RelationExtractionApproach
  43. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  44. def getBatchSize: Int

    Batch size

    Batch size

    Definition Classes
    GenericClassifierParams
  45. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  46. def getCustomLabels: Map[String, String]

    Get custom labels

    Get custom labels

    Definition Classes
    RelationExtractionApproach
  47. def getDatasetInfo: String

    get descriptive information about the dataset being used

    get descriptive information about the dataset being used

    Definition Classes
    GenericClassifierParams
  48. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  49. def getDropout: Float

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    GenericClassifierParams
  50. def getExistingLabels(): Array[String]
    Attributes
    protected
    Definition Classes
    RelationExtractionApproachGenericClassifierApproach
  51. def getFeatureScaling: String

    Get feature scaling method

    Get feature scaling method

    Definition Classes
    GenericClassifierParams
  52. def getFixImbalance: Boolean

    Fix imbalance in training set

    Fix imbalance in training set

    Definition Classes
    GenericClassifierParams
  53. def getFromEntityBeginCol: String

    Column for beginning of 'from' entity

    Column for beginning of 'from' entity

    Definition Classes
    RelationExtractionApproach
  54. def getFromEntityEndCol: String

    Column for end of 'from' entity

    Column for end of 'from' entity

    Definition Classes
    RelationExtractionApproach
  55. def getFromEntityLabelCol: String

    Column for 'from' entity label

    Column for 'from' entity label

    Definition Classes
    RelationExtractionApproach
  56. def getGraphParams(dataset: Dataset[_]): Int
  57. def getInputCols: Array[String]
    Definition Classes
    HasInputAnnotationCols
  58. def getLabelColumn: String

    Column with label per each document

    Column with label per each document

    Definition Classes
    GenericClassifierParams
  59. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  60. def getLearningRate: Float

    Learning Rate

    Learning Rate

    Definition Classes
    GenericClassifierParams
  61. def getMaxEpochs: Int

    Maximum number of epochs to train

    Maximum number of epochs to train

    Definition Classes
    GenericClassifierParams
  62. def getMaxSyntacticDistance: Int

    Maximal syntactic distance, as threshold (Default: 0)

    Maximal syntactic distance, as threshold (Default: 0)

    Definition Classes
    RelationExtractionApproach
  63. def getModelFile: String

    Model file name

    Model file name

    Definition Classes
    GenericClassifierParams
  64. def getMultiClass: Boolean

    Gets the model multi class prediction mode

    Gets the model multi class prediction mode

    Definition Classes
    GenericClassifierParams
  65. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  66. final def getOutputCol: String
    Definition Classes
    HasOutputAnnotationCol
  67. def getOutputLogsPath: String

    Get output logs path

    Get output logs path

    Definition Classes
    GenericClassifierParams
  68. def getOverrideExistingLabels: Boolean

    Whether to override already learned labels when using a pretrained model to initialize the new model.

    Whether to override already learned labels when using a pretrained model to initialize the new model.

    Definition Classes
    RelationExtractionApproach
  69. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  70. def getRelationDirectionCol: String

    Get relation direction

    Get relation direction

    Definition Classes
    RelationExtractionApproach
  71. def getScopeWindow: (Int, Int)

    Get scope window

    Get scope window

    Definition Classes
    RelationExtractionApproach
  72. def getTFWrapper(): TensorflowWrapper
    Attributes
    protected
    Definition Classes
    RelationExtractionApproachGenericClassifierApproach
  73. def getToEntityBeginCol: String

    Column for beginning of 'to' entity

    Column for beginning of 'to' entity

    Definition Classes
    RelationExtractionApproach
  74. def getToEntityEndCol: String

    Column for end of 'to' entity

    Column for end of 'to' entity

    Definition Classes
    RelationExtractionApproach
  75. def getToEntityLabelCol: String

    Column for 'to' entity label

    Column for 'to' entity label

    Definition Classes
    RelationExtractionApproach
  76. def getValidationSplit: Float

    Choose the proportion of training dataset to be validated against the model on each Epoch.

    Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    GenericClassifierParams
  77. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  78. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  79. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  80. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  81. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  82. val inputAnnotatorTypes: Array[AnnotatorType]

    Input annotator type : WORD_EMBEDDINGS, POS, CHUNK, DEPENDENCY

    Input annotator type : WORD_EMBEDDINGS, POS, CHUNK, DEPENDENCY

    Definition Classes
    RelationExtractionApproachGenericClassifierApproach → HasInputAnnotationCols
  83. final val inputCols: StringArrayParam
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  84. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  85. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  86. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  87. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  88. val labelColumn: Param[String]

    Column with label per each document

    Column with label per each document

    Definition Classes
    GenericClassifierParams
  89. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  90. val learningRate: FloatParam

    Learning Rate

    Learning Rate

    Definition Classes
    GenericClassifierParams
  91. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  92. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  93. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  94. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  95. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  96. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  97. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  98. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  99. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  100. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  101. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  102. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  103. var maxSyntacticDistance: IntParam

    Maximal syntactic distance, as threshold (Default: 0)

    Maximal syntactic distance, as threshold (Default: 0)

    Definition Classes
    RelationExtractionApproach
  104. val modelFile: Param[String]

    Location of file of the model used for classification

    Location of file of the model used for classification

    Definition Classes
    GenericClassifierParams
  105. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  106. val multiClass: BooleanParam

    If multiClass is set, the model will return all the labels with corresponding scores.

    If multiClass is set, the model will return all the labels with corresponding scores. By default, multiClass is false.

    Definition Classes
    GenericClassifierParams
  107. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  108. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  109. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  110. def onTrained(model: GenericClassifierModel, spark: SparkSession): Unit
    Definition Classes
    AnnotatorApproach
  111. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  112. val outputAnnotatorType: String

    Output annotator type : CATEGORY

    Output annotator type : CATEGORY

    Definition Classes
    GenericClassifierApproach → HasOutputAnnotatorType
  113. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  114. val outputLogsPath: Param[String]

    Folder path to save training logs.

    Folder path to save training logs. If no path is specified, the logs won't be stored in disk. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    Definition Classes
    GenericClassifierParams
  115. val overrideExistingLabels: BooleanParam

    Controls whether to override already learned lebels when using a pretrained model to initialize the new model.

    Controls whether to override already learned lebels when using a pretrained model to initialize the new model. A value of true will override existing lab els.

    Definition Classes
    RelationExtractionApproach
  116. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  117. val pretrainedModelPath: Param[String]

    Path to an already trained RelationExtractionModel.

    Path to an already trained RelationExtractionModel.

    This pretrained model will be used as a starting point for training the new one. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    Definition Classes
    RelationExtractionApproach
  118. var relationDirectionCol: Param[String]

    Relation direction column (possible values are: "none", "left" or "right").

    Relation direction column (possible values are: "none", "left" or "right").

    If this parameter is not set, the model will not have direction between the relation of the entities.

    Definition Classes
    RelationExtractionApproach
  119. def resumeTraining: Boolean
    Attributes
    protected
    Definition Classes
    RelationExtractionApproachGenericClassifierApproach
  120. def resumeTrainingFromModel(model: RelationExtractionModel): RelationExtractionApproach.this.type
    Definition Classes
    RelationExtractionApproach
  121. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  122. val scopeWindow: IntArrayParam

    The scope window of the assertion (whole sentence by default)

    The scope window of the assertion (whole sentence by default)

    Definition Classes
    RelationExtractionApproach
  123. final def set(paramPair: ParamPair[_]): RelationExtractionApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  124. final def set(param: String, value: Any): RelationExtractionApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  125. final def set[T](param: Param[T], value: T): RelationExtractionApproach.this.type
    Definition Classes
    Params
  126. def setBatchSize(batch: Int): RelationExtractionApproach.this.type

    Batch size

    Batch size

    Definition Classes
    GenericClassifierParams
  127. def setCustomLabels(labels: Map[String, String]): RelationExtractionApproach.this.type

    Set custom labels

    Set custom labels

    Definition Classes
    RelationExtractionApproach
  128. def setDatasetInfo(value: String): RelationExtractionApproach.this.type

    set descriptive information about the dataset being used

    set descriptive information about the dataset being used

    Definition Classes
    GenericClassifierParams
  129. final def setDefault(paramPairs: ParamPair[_]*): RelationExtractionApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  130. final def setDefault[T](param: Param[T], value: T): RelationExtractionApproach.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  131. def setDirectionSensitive(value: Boolean): RelationExtractionApproach.this.type

    If it is true, only relations in the form of "ENTITY1-ENTITY2" will be considered, If it is false, both "ENTITY1-ENTITY2" and "ENTITY2-ENTITY1" relations will be considered,

    If it is true, only relations in the form of "ENTITY1-ENTITY2" will be considered, If it is false, both "ENTITY1-ENTITY2" and "ENTITY2-ENTITY1" relations will be considered,

    Definition Classes
    RelationExtractionApproach
  132. def setDoExceptionHandling(value: Boolean): RelationExtractionApproach.this.type

    If true, exceptions are handled.

    If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.

    Definition Classes
    HandleExceptionParams
  133. def setDropout(dropout: Float): RelationExtractionApproach.this.type

    Dropout coefficient

    Dropout coefficient

    Definition Classes
    GenericClassifierParams
  134. def setEpochsNumber(epochs: Int): RelationExtractionApproach.this.type

    Maximum number of epochs to train

    Maximum number of epochs to train

    Definition Classes
    GenericClassifierParams
  135. def setFeatureScaling(featureScaling: String): RelationExtractionApproach.this.type

    Set the feature scaling method.

    Set the feature scaling method. Possible values are 'zscore', 'minmax' or empty (no scaling)

    Definition Classes
    GenericClassifierParams
  136. def setFilterByTokenDistance(value: Int): RelationExtractionApproach.this.type

    filtering criterion based on number of token between entities.

    filtering criterion based on number of token between entities. Model only finds relations that have fewer than the specified number of tokens between them

    Definition Classes
    RelationExtractionApproach
  137. def setFixImbalance(fix: Boolean): RelationExtractionApproach.this.type

    Fix imbalance of training set

    Fix imbalance of training set

    Definition Classes
    GenericClassifierParams
  138. def setFromEntity(beginCol: String, endCol: String, labelCol: String): RelationExtractionApproach.this.type

    Set from entity

    Set from entity

    Definition Classes
    RelationExtractionApproach
  139. final def setInputCols(value: String*): RelationExtractionApproach.this.type
    Definition Classes
    HasInputAnnotationCols
  140. def setInputCols(value: Array[String]): RelationExtractionApproach.this.type
    Definition Classes
    HasInputAnnotationCols
  141. def setLabelColumn(column: String): RelationExtractionApproach.this.type

    Column with label per each document

    Column with label per each document

    Definition Classes
    GenericClassifierParams
  142. def setLazyAnnotator(value: Boolean): RelationExtractionApproach.this.type
    Definition Classes
    CanBeLazy
  143. def setMaxSyntacticDistance(maxSyntacticDistance: Int): RelationExtractionApproach.this.type

    Maximal syntactic distance, as threshold (Default: 0)

    Maximal syntactic distance, as threshold (Default: 0)

    Definition Classes
    RelationExtractionApproach
  144. def setModelFile(modelFile: String): RelationExtractionApproach.this.type

    Set the model file name

    Set the model file name

    Definition Classes
    GenericClassifierParams
  145. def setMultiClass(value: Boolean): RelationExtractionApproach.this.type

    Sets the model in multi class prediction mode

    Sets the model in multi class prediction mode

    Definition Classes
    GenericClassifierParams
  146. final def setOutputCol(value: String): RelationExtractionApproach.this.type
    Definition Classes
    HasOutputAnnotationCol
  147. def setOutputLogsPath(outputLogsPath: String): RelationExtractionApproach.this.type

    Set the output log path

    Set the output log path

    Definition Classes
    GenericClassifierParams
  148. def setOverrideExistingLabels(value: Boolean): RelationExtractionApproach.this.type

    Controls whether to override already learned labels when using a pretrained model to initialize the new model.

    Controls whether to override already learned labels when using a pretrained model to initialize the new model. A value of true will override existing labels.

    Definition Classes
    RelationExtractionApproach
  149. def setPretrainedModelPath(path: String): RelationExtractionApproach.this.type

    Set the location of an already trained RelationExtractionModel, which is used as a starting point for training the new model.

    Set the location of an already trained RelationExtractionModel, which is used as a starting point for training the new model.

    Definition Classes
    RelationExtractionApproach
  150. def setRelationDirectionCol(value: String): RelationExtractionApproach.this.type

    Set relation direction column

    Set relation direction column

    Definition Classes
    RelationExtractionApproach
  151. def setScopeWindow(window: (Int, Int)): RelationExtractionApproach.this.type

    Max possible length of a sentence.

    Max possible length of a sentence.

    Definition Classes
    RelationExtractionApproach
  152. def setToEntity(beginCol: String, endCol: String, labelCol: String): RelationExtractionApproach.this.type

    Set to entity

    Set to entity

    Definition Classes
    RelationExtractionApproach
  153. def setValidationSplit(validationSplit: Float): RelationExtractionApproach.this.type

    Choose the proportion of training dataset to be validated against the model on each Epoch.

    Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    GenericClassifierParams
  154. def setlearningRate(lr: Float): RelationExtractionApproach.this.type

    Learning Rate

    Learning Rate

    Definition Classes
    GenericClassifierParams
  155. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  156. val toEntityBeginCol: Param[String]

    Column for beginning of 'to' entity

    Column for beginning of 'to' entity

    Definition Classes
    RelationExtractionApproach
  157. val toEntityEndCol: Param[String]

    Column for end of 'to' entity

    Column for end of 'to' entity

    Definition Classes
    RelationExtractionApproach
  158. val toEntityLabelCol: Param[String]

    Column for 'to' entity label

    Column for 'to' entity label

    Definition Classes
    RelationExtractionApproach
  159. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  160. def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): RelationExtractionModel
    Definition Classes
    RelationExtractionApproachGenericClassifierApproach → AnnotatorApproach
  161. final def transformSchema(schema: StructType): StructType
    Definition Classes
    AnnotatorApproach → PipelineStage
  162. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  163. val uid: String
    Definition Classes
    RelationExtractionApproachGenericClassifierApproach → Identifiable
  164. def validate(schema: StructType): Boolean
    Attributes
    protected
    Definition Classes
    AnnotatorApproach
  165. val validationSplit: FloatParam

    The proportion of training dataset to be used as validation set.

    The proportion of training dataset to be used as validation set.

    The model will be validated against this dataset on each Epoch and will not be used for training. The value should be between 0.0 and 1.0.

    Definition Classes
    GenericClassifierParams
  166. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  167. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  168. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  169. def write: MLWriter
    Definition Classes
    DefaultParamsWritable → MLWritable

Inherited from GenericClassifierApproach

Inherited from CheckLicense

Inherited from HandleExceptionParams

Inherited from GenericClassifierParams

Inherited from AnnotatorApproach[GenericClassifierModel]

Inherited from CanBeLazy

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from HasOutputAnnotatorType

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from Estimator[GenericClassifierModel]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters