trait AssertionDLParams extends Params
- Grouped
- Alphabetic
- By Inheritance
- AssertionDLParams
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
batchSize: IntParam
Size for each batch in the optimization process (Default: 64)
-
val
chunkCol: Param[String]
Column with extracted NER chunks
-
final
def
clear(param: Param[_]): AssertionDLParams.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
datasetInfo: Param[String]
Descriptive information about the dataset being used.
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
val
dropout: FloatParam
Dropout at the output of each layer (Default: 0.05f)
-
val
enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default: false)
-
val
endCol: Param[String]
Column with token number for last target token
-
val
epochs: IntParam
Number of epochs for the optimization process (Default: 5)
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
getConfigProtoBytes: Option[Array[Byte]]
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
def
getDatasetInfo: String
get descriptive information about the dataset being used
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
def
getEnableOutputLogs: Boolean
Whether to output to annotators log folder
-
def
getIncludeConfidence: Boolean
whether to include confidence scores in annotation metadata
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getOutputLogsPath: String
Folder path to save training logs
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
def
getScopeWindow: (Int, Int)
Get scope window
-
val
graphFile: Param[String]
File path that contain external graph file.
File path that contain external graph file. When specified, the provided file will be used, and no graph search will happen. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).
-
val
graphFolder: Param[String]
Folder path that contain external graph files.
Folder path that contain external graph files.
Folder path that contain external graph files. The path can a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
includeConfidence: BooleanParam
Whether to include confidence scores in annotation metadata
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
val
labelCol: Param[String]
Column with one label per document.
Column with one label per document. Example of possible values: “present”, “absent”, “hypothetical”, “conditional”, “associated_with_other_person”, etc.
-
val
learningRate: FloatParam
Learning rate for the optimization process (Default: 0.0012f)
-
val
maxSentLen: IntParam
Max possible length of a sentence, must match graph model (Default: 250)
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
outputLogsPath: Param[String]
Folder path to save training logs.
Folder path to save training logs. If no path is specified, the logs won't be stored in disk. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
val
scopeWindow: IntArrayParam
The scope window of the assertion (whole sentence by default)
-
final
def
set(paramPair: ParamPair[_]): AssertionDLParams.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): AssertionDLParams.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): AssertionDLParams.this.type
- Definition Classes
- Params
-
def
setBatchSize(size: Int): AssertionDLParams.this.type
Size for each batch in the optimization process
-
def
setChunkCol(c: String): AssertionDLParams.this.type
Column with extracted NER chunks
-
def
setConfigProtoBytes(bytes: Array[Int]): AssertionDLParams.this.type
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
-
def
setDatasetInfo(value: String): AssertionDLParams.this.type
set descriptive information about the dataset being used
-
final
def
setDefault(paramPairs: ParamPair[_]*): AssertionDLParams.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): AssertionDLParams.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
-
def
setDropout(factor: Float): AssertionDLParams.this.type
Dropout at the output of each layer
-
def
setEnableOutputLogs(v: Boolean): AssertionDLParams.this.type
Whether to output to annotators log folder
-
def
setEndCol(e: String): AssertionDLParams.this.type
Column with token number for last target token
-
def
setEpochs(number: Int): AssertionDLParams.this.type
Number of epochs for the optimization process
-
def
setGraphFile(path: String): AssertionDLParams.this.type
Folder path that contain external graph files
-
def
setGraphFolder(path: String): AssertionDLParams.this.type
Folder path that contain external graph files
-
def
setIncludeConfidence(value: Boolean): AssertionDLParams.this.type
Whether to include confidence scores in annotation metadata
-
def
setLabelCol(label: String): AssertionDLParams.this.type
Column with one label per document
-
def
setLearningRate(rate: Float): AssertionDLParams.this.type
Learning rate for the optimization process
-
def
setMaxSentLen(len: Int): AssertionDLParams.this.type
Max possible length of a sentence, must match graph model
-
def
setOutputLogsPath(v: String): AssertionDLParams.this.type
Folder path to save training logs
-
def
setScopeWindow(window: (Int, Int)): AssertionDLParams.this.type
Max possible length of a sentence.
-
def
setStartCol(s: String): AssertionDLParams.this.type
Column with token number for first target token
-
def
setValidationSplit(validationSplit: Float): AssertionDLParams.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch.
Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.
-
def
setVerbose(verbose: Level): AssertionDLParams.this.type
Level of verbosity during training
-
val
startCol: Param[String]
Column with token number for first target token
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
val
validationSplit: FloatParam
The proportion of training dataset to be used as validation set.
The proportion of training dataset to be used as validation set.
The model will be validated against this dataset on each Epoch and will not be used for training. The value should be between 0.0 and 1.0.
-
val
verbose: IntParam
Level of verbosity during training
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()