Packages

class AssertionDLApproach extends nlp.annotators.assertion.dl.AssertionDLApproach

Contains all the methods for training an AssertionDLModel. For pretrained models please use AssertionDLModel and see the Models Hub for available models.

Example

First, pipeline stages for pre-processing the dataset (containing columns for text and label) are defined.

val document = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")
val chunk = new Doc2Chunk()
  .setInputCols("document")
  .setOutputCol("chunk")
val token = new Tokenizer()
  .setInputCols("document")
  .setOutputCol("token")
val embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
  .setInputCols("document", "token")
  .setOutputCol("embeddings")

Define AssertionDLApproach with parameters and start training

val assertionStatus = new AssertionDLApproach()
  .setLabelCol("label")
  .setInputCols("document", "chunk", "embeddings")
  .setOutputCol("assertion")
  .setBatchSize(128)
  .setDropout(0.012f)
  .setLearningRate(0.015f)
  .setEpochs(1)
  .setStartCol("start")
  .setEndCol("end")
  .setMaxSentLen(250)

val trainingPipeline = new Pipeline().setStages(Array(
  document,
  chunk,
  token,
  embeddings,
  assertionStatus
))

val assertionModel = trainingPipeline.fit(data)
val assertionResults = assertionModel.transform(data).cache()
See also

AssertionDLModel for using pretrained models

AssertionLogRegModel for non deep learning based extraction

Linear Supertypes
nlp.annotators.assertion.dl.AssertionDLApproach, CheckLicense, HandleExceptionParams, Logging, WhiteAndBlackListParams, AssertionDLParams, AnnotatorApproach[nlp.annotators.assertion.dl.AssertionDLModel], CanBeLazy, DefaultParamsWritable, MLWritable, HasOutputAnnotatorType, HasOutputAnnotationCol, HasInputAnnotationCols, Estimator[nlp.annotators.assertion.dl.AssertionDLModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. AssertionDLApproach
  2. AssertionDLApproach
  3. CheckLicense
  4. HandleExceptionParams
  5. Logging
  6. WhiteAndBlackListParams
  7. AssertionDLParams
  8. AnnotatorApproach
  9. CanBeLazy
  10. DefaultParamsWritable
  11. MLWritable
  12. HasOutputAnnotatorType
  13. HasOutputAnnotationCol
  14. HasInputAnnotationCols
  15. Estimator
  16. PipelineStage
  17. Logging
  18. Params
  19. Serializable
  20. Serializable
  21. Identifiable
  22. AnyRef
  23. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new AssertionDLApproach()
  2. new AssertionDLApproach(uid: String)

    uid

    a unique identifier for the instantiated AnnotatorModel

Type Members

  1. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): nlp.annotators.assertion.dl.AssertionDLModel
    Attributes
    protected
    Definition Classes
    AnnotatorApproach
  6. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  7. val batchSize: IntParam

    Size for each batch in the optimization process (Default: 64)

    Size for each batch in the optimization process (Default: 64)

    Definition Classes
    AssertionDLParams
  8. def beforeTraining(spark: SparkSession): Unit
    Definition Classes
    AnnotatorApproach
  9. val blackList: StringArrayParam

    If defined, list of entities to ignore.

    If defined, list of entities to ignore. The rest will be processed. Should not include IOB prefix on labels. Default: Array()

    Definition Classes
    WhiteAndBlackListParams
  10. val caseSensitive: BooleanParam

    Determines whether the definitions of the white listed and black listed entities are case sensitive or not.

    Determines whether the definitions of the white listed and black listed entities are case sensitive or not. Default: true

    Definition Classes
    WhiteAndBlackListParams
  11. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  12. def checkValidEnvironment(spark: Option[SparkSession], scopes: Seq[String]): Unit
    Definition Classes
    CheckLicense
  13. def checkValidScope(scope: String): Unit
    Definition Classes
    CheckLicense
  14. def checkValidScopeAndEnvironment(scope: String, spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  15. def checkValidScopesAndEnvironment(scopes: Seq[String], spark: Option[SparkSession], checkLp: Boolean): Unit
    Definition Classes
    CheckLicense
  16. val chunkCol: Param[String]

    Column with extracted NER chunks

    Column with extracted NER chunks

    Definition Classes
    AssertionDLParams
  17. final def clear(param: Param[_]): AssertionDLApproach.this.type
    Definition Classes
    Params
  18. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  19. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    AssertionDLParams
  20. final def copy(extra: ParamMap): Estimator[nlp.annotators.assertion.dl.AssertionDLModel]
    Definition Classes
    AnnotatorApproach → Estimator → PipelineStage → Params
  21. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  22. val datasetInfo: Param[String]

    Descriptive information about the dataset being used.

    Descriptive information about the dataset being used.

    Definition Classes
    AssertionDLParams
  23. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  24. val description: String
    Definition Classes
    AssertionDLApproach → AnnotatorApproach
  25. val doExceptionHandling: BooleanParam

    If true, exceptions are handled.

    If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.

    Definition Classes
    HandleExceptionParams
  26. val dropout: FloatParam

    Dropout at the output of each layer (Default: 0.05f)

    Dropout at the output of each layer (Default: 0.05f)

    Definition Classes
    AssertionDLParams
  27. val enableOutputLogs: BooleanParam

    Whether to output to annotators log folder (Default: false)

    Whether to output to annotators log folder (Default: false)

    Definition Classes
    AssertionDLParams
  28. val endCol: Param[String]

    Column with token number for last target token

    Column with token number for last target token

    Definition Classes
    AssertionDLParams
  29. val epochs: IntParam

    Number of epochs for the optimization process (Default: 5)

    Number of epochs for the optimization process (Default: 5)

    Definition Classes
    AssertionDLParams
  30. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  31. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  32. def evaluateFilter(filter: String): Boolean

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param.

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  33. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  34. def explainParams(): String
    Definition Classes
    Params
  35. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  36. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  37. def filterByEntityField(annotation: Annotation): Boolean

    Filter annotation by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotation by blackList and whiteList, taking into account the caseSensitive param. It filters by annotation.metadata.getOrElse("entity", annotation.metadata.getOrElse("identifier", "")).toString

    returns

    Boolean

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  38. def filterByEntityField(annotations: Seq[Annotation]): Seq[Annotation]

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param. It filters by annotation.metadata.getOrElse("entity", annotation.metadata.getOrElse("identifier", "")).toString

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  39. def filterByWhiteAndBlackList(annotation: Annotation): Boolean

    Filter annotation by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotation by blackList and whiteList, taking into account the caseSensitive param. It filters by annotation.result

    returns

    Boolean

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  40. def filterByWhiteAndBlackList(annotations: Seq[Annotation]): Seq[Annotation]

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param.

    Filter annotations by blackList and whiteList, taking into account the caseSensitive param. It filters by annotation.result

    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  41. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  42. final def fit(dataset: Dataset[_]): nlp.annotators.assertion.dl.AssertionDLModel
    Definition Classes
    AnnotatorApproach → Estimator
  43. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[nlp.annotators.assertion.dl.AssertionDLModel]
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  44. def fit(dataset: Dataset[_], paramMap: ParamMap): nlp.annotators.assertion.dl.AssertionDLModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  45. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): nlp.annotators.assertion.dl.AssertionDLModel
    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  46. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  47. def getBlackList: Array[String]

    Gets blackList param

    Gets blackList param

    Definition Classes
    WhiteAndBlackListParams
  48. def getCaseSensitive: Boolean

    Gets caseSensitive param

    Gets caseSensitive param

    Definition Classes
    WhiteAndBlackListParams
  49. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  50. def getConfigProtoBytes: Option[Array[Byte]]

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    AssertionDLParams
  51. def getDatasetInfo: String

    get descriptive information about the dataset being used

    get descriptive information about the dataset being used

    Definition Classes
    AssertionDLParams
  52. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  53. def getEnableOutputLogs: Boolean

    Whether to output to annotators log folder

    Whether to output to annotators log folder

    Definition Classes
    AssertionDLParams
  54. def getIncludeConfidence: Boolean

    whether to include confidence scores in annotation metadata

    whether to include confidence scores in annotation metadata

    Definition Classes
    AssertionDLParams
  55. def getInputCols: Array[String]
    Definition Classes
    HasInputAnnotationCols
  56. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  57. def getLogName: String
    Definition Classes
    Logging
  58. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  59. final def getOutputCol: String
    Definition Classes
    HasOutputAnnotationCol
  60. def getOutputLogsPath: String

    Folder path to save training logs

    Folder path to save training logs

    Definition Classes
    AssertionDLParams
  61. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  62. def getScopeWindow: (Int, Int)

    Get scope window

    Get scope window

    Definition Classes
    AssertionDLParams
  63. def getWhiteList: Array[String]

    Gets whiteList param

    Gets whiteList param

    Definition Classes
    WhiteAndBlackListParams
  64. val graphFile: Param[String]

    File path that contain external graph file.

    File path that contain external graph file. When specified, the provided file will be used, and no graph search will happen. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    Definition Classes
    AssertionDLParams
  65. val graphFolder: Param[String]

    Folder path that contain external graph files.

    Folder path that contain external graph files.

    Folder path that contain external graph files. The path can a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    Definition Classes
    AssertionDLParams
  66. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  67. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  68. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  69. val includeConfidence: BooleanParam

    Whether to include confidence scores in annotation metadata

    Whether to include confidence scores in annotation metadata

    Definition Classes
    AssertionDLParams
  70. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  71. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  72. val inputAnnotatorTypes: Array[String]

    Input Annotator Types: DOCUMENT, CHUNK, WORD_EMBEDDINGS

    Input Annotator Types: DOCUMENT, CHUNK, WORD_EMBEDDINGS

    Definition Classes
    AssertionDLApproach → HasInputAnnotationCols
  73. final val inputCols: StringArrayParam
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  74. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  75. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  76. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  77. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  78. def isValueInList(value: String, list: Array[String]): Boolean
    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  79. def isWhiteListAndBlacklistEmpty: Boolean
    Attributes
    protected
    Definition Classes
    WhiteAndBlackListParams
  80. val labelCol: Param[String]

    Column with one label per document.

    Column with one label per document. Example of possible values: “present”, “absent”, “hypothetical”, “conditional”, “associated_with_other_person”, etc.

    Definition Classes
    AssertionDLParams
  81. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  82. val learningRate: FloatParam

    Learning rate for the optimization process (Default: 0.0012f)

    Learning rate for the optimization process (Default: 0.0012f)

    Definition Classes
    AssertionDLParams
  83. def log(value: ⇒ String, minLevel: Level): Unit
    Attributes
    protected
    Definition Classes
    Logging
  84. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  85. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  86. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  87. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  88. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  89. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  90. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  91. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  92. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  93. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  94. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  95. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  96. val logger: Logger
    Attributes
    protected
    Definition Classes
    Logging
  97. val maxSentLen: IntParam

    Max possible length of a sentence, must match graph model (Default: 250)

    Max possible length of a sentence, must match graph model (Default: 250)

    Definition Classes
    AssertionDLParams
  98. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  99. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  100. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  101. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  102. def onTrained(model: nlp.annotators.assertion.dl.AssertionDLModel, spark: SparkSession): Unit
    Definition Classes
    AnnotatorApproach
  103. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  104. val outputAnnotatorType: AnnotatorType

    Output annotator type: ASSERTION

    Output annotator type: ASSERTION

    Definition Classes
    AssertionDLApproach → HasOutputAnnotatorType
  105. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  106. def outputLog(value: ⇒ String, uuid: String, shouldLog: Boolean, outputLogsPath: String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  107. val outputLogsPath: Param[String]

    Folder path to save training logs.

    Folder path to save training logs. If no path is specified, the logs won't be stored in disk. The path can be a local file path, a distributed file path (HDFS, DBFS), or a cloud storage (S3).

    Definition Classes
    AssertionDLParams
  108. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  109. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  110. val scopeWindow: IntArrayParam

    The scope window of the assertion (whole sentence by default)

    The scope window of the assertion (whole sentence by default)

    Definition Classes
    AssertionDLParams
  111. final def set(paramPair: ParamPair[_]): AssertionDLApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  112. final def set(param: String, value: Any): AssertionDLApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  113. final def set[T](param: Param[T], value: T): AssertionDLApproach.this.type
    Definition Classes
    Params
  114. def setAllowList(list: String*): AssertionDLApproach.this.type
    Definition Classes
    WhiteAndBlackListParams
  115. def setAllowList(list: Array[String]): AssertionDLApproach.this.type
    Definition Classes
    WhiteAndBlackListParams
  116. def setBatchSize(size: Int): AssertionDLApproach.this.type

    Size for each batch in the optimization process

    Size for each batch in the optimization process

    Definition Classes
    AssertionDLParams
  117. def setBlackList(list: String*): AssertionDLApproach.this.type
    Definition Classes
    WhiteAndBlackListParams
  118. def setBlackList(list: Array[String]): AssertionDLApproach.this.type

    If defined, list of entities to ignore.

    If defined, list of entities to ignore. The rest will be processed. Should not include IOB prefix on labels. Default: Array()

    Definition Classes
    WhiteAndBlackListParams
  119. def setCaseSensitive(value: Boolean): AssertionDLApproach.this.type

    Determines whether the definitions of the white listed and black listed entities are case sensitive or not.

    Determines whether the definitions of the white listed and black listed entities are case sensitive or not. Default: true

    Definition Classes
    WhiteAndBlackListParams
  120. def setChunkCol(c: String): AssertionDLApproach.this.type

    Column with extracted NER chunks

    Column with extracted NER chunks

    Definition Classes
    AssertionDLParams
  121. def setConfigProtoBytes(bytes: Array[Int]): AssertionDLApproach.this.type

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    AssertionDLParams
  122. def setDatasetInfo(value: String): AssertionDLApproach.this.type

    set descriptive information about the dataset being used

    set descriptive information about the dataset being used

    Definition Classes
    AssertionDLParams
  123. final def setDefault(paramPairs: ParamPair[_]*): AssertionDLApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  124. final def setDefault[T](param: Param[T], value: T): AssertionDLApproach.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  125. def setDenyList(list: String*): AssertionDLApproach.this.type
    Definition Classes
    WhiteAndBlackListParams
  126. def setDenyList(list: Array[String]): AssertionDLApproach.this.type
    Definition Classes
    WhiteAndBlackListParams
  127. def setDoExceptionHandling(value: Boolean): AssertionDLApproach.this.type

    If true, exceptions are handled.

    If true, exceptions are handled. If exception causing data is passed to the model, a error annotation is emitted which has the exception message. Processing continues with the next one. This comes with a performance penalty.

    Definition Classes
    HandleExceptionParams
  128. def setDropout(factor: Float): AssertionDLApproach.this.type

    Dropout at the output of each layer

    Dropout at the output of each layer

    Definition Classes
    AssertionDLParams
  129. def setEnableOutputLogs(v: Boolean): AssertionDLApproach.this.type

    Whether to output to annotators log folder

    Whether to output to annotators log folder

    Definition Classes
    AssertionDLParams
  130. def setEndCol(e: String): AssertionDLApproach.this.type

    Column with token number for last target token

    Column with token number for last target token

    Definition Classes
    AssertionDLParams
  131. def setEpochs(number: Int): AssertionDLApproach.this.type

    Number of epochs for the optimization process

    Number of epochs for the optimization process

    Definition Classes
    AssertionDLParams
  132. def setGraphFile(path: String): AssertionDLApproach.this.type

    Folder path that contain external graph files

    Folder path that contain external graph files

    Definition Classes
    AssertionDLParams
  133. def setGraphFolder(path: String): AssertionDLApproach.this.type

    Folder path that contain external graph files

    Folder path that contain external graph files

    Definition Classes
    AssertionDLParams
  134. def setIncludeConfidence(value: Boolean): AssertionDLApproach.this.type

    Whether to include confidence scores in annotation metadata

    Whether to include confidence scores in annotation metadata

    Definition Classes
    AssertionDLParams
  135. final def setInputCols(value: String*): AssertionDLApproach.this.type
    Definition Classes
    HasInputAnnotationCols
  136. def setInputCols(value: Array[String]): AssertionDLApproach.this.type
    Definition Classes
    HasInputAnnotationCols
  137. def setLabelCol(label: String): AssertionDLApproach.this.type

    Column with one label per document

    Column with one label per document

    Definition Classes
    AssertionDLParams
  138. def setLazyAnnotator(value: Boolean): AssertionDLApproach.this.type
    Definition Classes
    CanBeLazy
  139. def setLearningRate(rate: Float): AssertionDLApproach.this.type

    Learning rate for the optimization process

    Learning rate for the optimization process

    Definition Classes
    AssertionDLParams
  140. def setMaxSentLen(len: Int): AssertionDLApproach.this.type

    Max possible length of a sentence, must match graph model

    Max possible length of a sentence, must match graph model

    Definition Classes
    AssertionDLParams
  141. final def setOutputCol(value: String): AssertionDLApproach.this.type
    Definition Classes
    HasOutputAnnotationCol
  142. def setOutputLogsPath(v: String): AssertionDLApproach.this.type

    Folder path to save training logs

    Folder path to save training logs

    Definition Classes
    AssertionDLParams
  143. def setScopeWindow(window: (Int, Int)): AssertionDLApproach.this.type

    Max possible length of a sentence.

    Max possible length of a sentence.

    Definition Classes
    AssertionDLParams
  144. def setStartCol(s: String): AssertionDLApproach.this.type

    Column with token number for first target token

    Column with token number for first target token

    Definition Classes
    AssertionDLParams
  145. def setValidationSplit(validationSplit: Float): AssertionDLApproach.this.type

    Choose the proportion of training dataset to be validated against the model on each Epoch.

    Choose the proportion of training dataset to be validated against the model on each Epoch. The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    AssertionDLParams
  146. def setVerbose(verbose: Level): AssertionDLApproach.this.type

    Level of verbosity during training

    Level of verbosity during training

    Definition Classes
    AssertionDLParams
  147. def setWhiteList(list: String*): AssertionDLApproach.this.type
    Definition Classes
    WhiteAndBlackListParams
  148. def setWhiteList(list: Array[String]): AssertionDLApproach.this.type

    Sets the list of entities to process.

    Sets the list of entities to process. The rest will be ignored. Should not include IOB prefix on labels. Default: Array()

    Definition Classes
    WhiteAndBlackListParams
  149. val startCol: Param[String]

    Column with token number for first target token

    Column with token number for first target token

    Definition Classes
    AssertionDLParams
  150. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  151. val testDataset: ExternalResourceParam

    Path to test dataset.

    Path to test dataset. If set used to calculate statistic on it during training

    Definition Classes
    AssertionDLApproach
  152. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  153. def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): AssertionDLModel

    Trains the dataset with recursive pipeline and uses methods trainWithChunk() and trainwithStartEnd() The choice of training happens based on the startCol value of the DL Approach

    Trains the dataset with recursive pipeline and uses methods trainWithChunk() and trainwithStartEnd() The choice of training happens based on the startCol value of the DL Approach

    dataset

    a collection of inputs to train

    recursivePipeline

    an instance of PipelineModel

    returns

    an instance of trained AssertionDLModel

    Definition Classes
    AssertionDLApproachAssertionDLApproach → AnnotatorApproach
  154. final def transformSchema(schema: StructType): StructType
    Definition Classes
    AnnotatorApproach → PipelineStage
  155. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  156. val uid: String
    Definition Classes
    AssertionDLApproachAssertionDLApproach → Identifiable
  157. def validate(schema: StructType): Boolean
    Attributes
    protected
    Definition Classes
    AnnotatorApproach
  158. val validationSplit: FloatParam

    The proportion of training dataset to be used as validation set.

    The proportion of training dataset to be used as validation set.

    The model will be validated against this dataset on each Epoch and will not be used for training. The value should be between 0.0 and 1.0.

    Definition Classes
    AssertionDLParams
  159. val verbose: IntParam

    Level of verbosity during training

    Level of verbosity during training

    Definition Classes
    AssertionDLParams
  160. val verboseLevel: Level
    Definition Classes
    AssertionDLApproach → Logging
  161. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  162. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  163. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  164. val whiteList: StringArrayParam

    If defined, list of entities to process.

    If defined, list of entities to process. The rest will be ignored. Should not include IOB prefix on labels. Default: Array()

    Definition Classes
    WhiteAndBlackListParams
  165. def write: MLWriter
    Definition Classes
    DefaultParamsWritable → MLWritable

Inherited from CheckLicense

Inherited from HandleExceptionParams

Inherited from Logging

Inherited from WhiteAndBlackListParams

Inherited from AssertionDLParams

Inherited from AnnotatorApproach[nlp.annotators.assertion.dl.AssertionDLModel]

Inherited from CanBeLazy

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from HasOutputAnnotatorType

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters