Description
This model is a BioBERT based classifier that can classify patients non-adherent to their treatments and their reasons on Twitter.
Predicted Entities
negative, positive
How to use
document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")
sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_treatment_changes_sentiment_tweet_onnx", "en", "clinical/models")\
  .setInputCols(["document", "token"])\
  .setOutputCol("class")
pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier    
])
data = spark.createDataFrame(["I love when they say things like this. I took that ambien instead of my thyroid pill.",
                              "I am a 30 year old man who is not overweight but is still on the verge of needing a Lipitor prescription."], StringType()).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = nlp.Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")
sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_treatment_changes_sentiment_tweet_onnx", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("classes")
pipeline = nlp.Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])
data = spark.createDataFrame(["I love when they say things like this. I took that ambien instead of my thyroid pill.",
                              "I am a 30 year old man who is not overweight but is still on the verge of needing a Lipitor prescription."], StringType()).toDF("text")
model = pipeline.fit(data)
result = model.transform(data)
val document_assembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document")) 
    .setOutputCol("token")
val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_treatment_changes_sentiment_tweet_onnx", "en", "clinical/models")
  .setInputCols(Array("document","token"))
  .setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))
val data = Seq(Array("I love when they say things like this. I took that ambien instead of my thyroid pill.",
                      "I am a 30 year old man who is not overweight but is still on the verge of needing a Lipitor prescription.")).toDF("text")
val model = pipeline.fit(data)
val result = model.transform(data)
Results
+---------------------------------------------------------------------------------------------------------+----------+
|text                                                                                                     |result    |
+---------------------------------------------------------------------------------------------------------+----------+
|I love when they say things like this. I took that ambien instead of my thyroid pill.                    |[positive]|
|I am a 30 year old man who is not overweight but is still on the verge of needing a Lipitor prescription.|[negative]|
+---------------------------------------------------------------------------------------------------------+----------+
Model Information
| Model Name: | bert_sequence_classifier_treatment_changes_sentiment_tweet_onnx | 
| Compatibility: | Healthcare NLP 6.1.1+ | 
| License: | Licensed | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [label] | 
| Language: | en | 
| Size: | 437.7 MB | 
| Case sensitive: | true |