Emotional Stressor Classifier (BERT) ONNX

Description

This model is a bioBERT based classifier that can classify source of emotional stress in text.

Predicted Entities

Family_Issues, Financial_Problem, Health_Fatigue_or_Physical Pain, Other, School, Work, Social_Relationships

Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_stressor_onnx", "en", "clinical/models")\
  .setInputCols(["document", "token"])\
  .setOutputCol("class")

pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier    
])
data = spark.createDataFrame([["All the panic about the global pandemic has been stressing me out!"]]).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = nlp.Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_stressor_onnx", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("classes")

pipeline = nlp.Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])

data = spark.createDataFrame([["All the panic about the global pandemic has been stressing me out!"]]).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)

import com.johnsnowlabs.nlp.base._
import com.johnsnowlabs.nlp.annotators._
import org.apache.spark.ml.Pipeline
import spark.implicits._

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val sentenceDetector = new SentenceDetectorDLModel()
  .pretrained("sentence_detector_dl","xx")
  .setInputCols(["document"])
  .setOutputCol("sentence")

val tokenizer = new Tokenizer()
  .setInputCols("document")
  .setOutputCol("token")

val tokenClassifier = MedicalBertForTokenClassifier
  .pretrained("bert_sequence_classifier_stressor_onnx", "en", "clinical/models")
  .setInputCols("token", "document")
  .setOutputCol("ner")
  .setCaseSensitive(true)

val nerConverter = new NerConverter()
  .setInputCols("document", "token", "ner")
  .setOutputCol("ner_chunk")

val pipeline = new Pipeline()
  .setStages(Array(
    documentAssembler,
    sentenceDetector,
    tokenizer,
    tokenClassifier,
    nerConverter
  ))

val data = Seq("All the panic about the global pandemic has been stressing me out!").toDF("text")

val model = pipeline.fit(data)
val result = model.transform(data)

Results


+------------------------------------------------------------------+-----------------------------------+
|text                                                              |class                              |
+------------------------------------------------------------------+-----------------------------------+
|All the panic about the global pandemic has been stressing me out!|[Health, Fatigue, or Physical Pain]|
+------------------------------------------------------------------+-----------------------------------+

Model Information

Model Name: bert_sequence_classifier_stressor_onnx
Compatibility: Healthcare NLP 6.1.1+
License: Licensed
Edition: Official
Input Labels: [document, token]
Output Labels: [label]
Language: en
Size: 437.7 MB
Case sensitive: true