Vaccine Sentiment Classifier (BioBERT) ONNX

Description

This model is a BioBERT based sentimental analysis model that can extract information from COVID-19 Vaccine-related tweets. The model predicts whether a tweet contains positive, negative, or neutral sentiments about COVID-19 Vaccines.

Predicted Entities

neutral, positive, negative

Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequence_classifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_vaccine_sentiment_onnx", "en", "clinical/models")\
  .setInputCols(["document", "token"])\
  .setOutputCol("class")

pipeline = Pipeline(stages=[
    document_assembler, 
    tokenizer,
    sequence_classifier    
])

text_list = ['A little bright light for an otherwise dark week. Thanks researchers, and frontline workers. Onwards.', 
             'People with a history of severe allergic reaction to any component of the vaccine should not take.', 
             '43 million doses of vaccines administrated worldwide...Production capacity of CHINA to reach 4 b']

data = spark.createDataFrame(text_list, StringType()).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)
document_assembler = nlp.DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = nlp.Tokenizer() \
    .setInputCols(["document"]) \
    .setOutputCol("token")

sequenceClassifier = medical.BertForSequenceClassification.pretrained("bert_sequence_classifier_vaccine_sentiment_onnx", "en", "clinical/models")\
    .setInputCols(["document","token"])\
    .setOutputCol("classes")

pipeline = nlp.Pipeline(stages=[
    document_assembler,
    tokenizer,
    sequenceClassifier
])

text_list = ['A little bright light for an otherwise dark week. Thanks researchers, and frontline workers. Onwards.', 
             'People with a history of severe allergic reaction to any component of the vaccine should not take.', 
             '43 million doses of vaccines administrated worldwide...Production capacity of CHINA to reach 4 b']

data = spark.createDataFrame(text_list, StringType()).toDF("text")

model = pipeline.fit(data)
result = model.transform(data)

val document_assembler = new DocumentAssembler() 
    .setInputCol("text") 
    .setOutputCol("document")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("document")) 
    .setOutputCol("token")

val sequenceClassifier = MedicalBertForSequenceClassification.pretrained("bert_sequence_classifier_vaccine_sentiment_onnx", "en", "clinical/models")
  .setInputCols(Array("document","token"))
  .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, sequenceClassifier))

val data = Seq(Array("A little bright light for an otherwise dark week. Thanks researchers, and frontline workers. Onwards.", 
                     "People with a history of severe allergic reaction to any component of the vaccine should not take.", 
                     "43 million doses of vaccines administrated worldwide...Production capacity of CHINA to reach 4 b")).toDF("text")


val model = pipeline.fit(data)
val result = model.transform(data)

Results


+-----------------------------------------------------------------------------------------------------+----------+
|text                                                                                                 |class     |
+-----------------------------------------------------------------------------------------------------+----------+
|A little bright light for an otherwise dark week. Thanks researchers, and frontline workers. Onwards.|[positive]|
|People with a history of severe allergic reaction to any component of the vaccine should not take.   |[negative]|
|43 million doses of vaccines administrated worldwide...Production capacity of CHINA to reach 4 b     |[neutral] |
+-----------------------------------------------------------------------------------------------------+----------+

Model Information

Model Name: bert_sequence_classifier_vaccine_sentiment_onnx
Compatibility: Healthcare NLP 6.1.1+
License: Licensed
Edition: Official
Input Labels: [document, token]
Output Labels: [label]
Language: en
Size: 437.7 MB
Case sensitive: true