Description
This pretrained model maps RxNorm and RxNorm Extension codes with their corresponding actions. Action refers to the function of the drug in various body systems.
Predicted Entities
action
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("ner_chunk")
sbert_embedder = BertSentenceEmbeddings\
.pretrained("sbiobert_base_cased_mli", "en","clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("sbert_embeddings")\
.setCaseSensitive(False)
rxnorm_resolver = SentenceEntityResolverModel\
.pretrained("sbiobertresolve_rxnorm_augmented", "en", "clinical/models")\
.setInputCols(["sbert_embeddings"])\
.setOutputCol("rxnorm_code")\
.setDistanceFunction("EUCLIDEAN")
resolver2chunk = Resolution2Chunk()\
.setInputCols(["rxnorm_code"]) \
.setOutputCol("resolver2chunk")
chunkMapper = ChunkMapperModel.pretrained("rxnorm_action_mapper", "en", "clinical/models")\
.setInputCols(["resolver2chunk"])\
.setOutputCol("mappings")\
.setRels(["action"])
pipeline = Pipeline(
stages = [
documentAssembler,
sbert_embedder,
rxnorm_resolver,
resolver2chunk,
chunkMapper
])
test_data = spark.createDataFrame([["Eviplera"], ["Zonalon 50 mg"], ["Rompun"], ["Glucovance"], ["Abbokinase"]]).toDF("text")
res= model.fit(test_data).transform(test_data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("ner_chunk")
val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")
.setInputCols("ner_chunk")
.setOutputCol("sbert_embeddings")
.setCaseSensitive(False)
val rxnorm_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_rxnorm_augmented", "en", "clinical/models")
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("rxnorm_code")
.setDistanceFunction("EUCLIDEAN")
val resolver2chunk = new Resolution2Chunk()\
.setInputCols(["rxnorm_code"]) \
.setOutputCol("resolver2chunk")
val chunkMapper = ChunkMapperModel.pretrained("rxnorm_action_mapper", "en", "clinical/models")
.setInputCols("resolver2chunk")
.setOutputCol("mappings")
.setRels("action")
val pipeline = new Pipeline(stages = Array(
documentAssembler,
sbert_embedder,
rxnorm_resolver,
resolver2chunk,
chunkMapper
))
val data = Seq(Array("Eviplera", "Zonalon 50 mg", "Rompun", "Glucovance", "Abbokinase")).toDS.toDF("text")
val result= pipeline.fit(data).transform(data)
Results
+-------------+-----------+--------------------------+--------+
|ner_chunk |rxnorm_code|action_mapping_result |relation|
+-------------+-----------+--------------------------+--------+
|Eviplera |217010 |Inhibitory Bone Resorption|action |
|Zonalon 50 mg|103971 |Analgesic |action |
|Rompun |1536491 |Venotonic |action |
|Glucovance |284743 |Drugs Used In Diabets |action |
|Abbokinase |204209 |Fibrinolytic |action |
+-------------+-----------+--------------------------+--------+
Model Information
Model Name: | rxnorm_action_mapper |
Compatibility: | Healthcare NLP 5.2.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 5.7 MB |