Description
This pretrained model maps RxNorm and RxNorm Extension codes with their corresponding treatment. Treatment refers to which disease the drug is used to treat.
Predicted Entities
treatment
How to use
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("ner_chunk")
sbert_embedder = BertSentenceEmbeddings\
.pretrained("sbiobert_base_cased_mli", "en","clinical/models")\
.setInputCols(["ner_chunk"])\
.setOutputCol("sbert_embeddings")\
.setCaseSensitive(False)
rxnorm_resolver = SentenceEntityResolverModel\
.pretrained("sbiobertresolve_rxnorm_augmented", "en", "clinical/models")\
.setInputCols(["sbert_embeddings"])\
.setOutputCol("rxnorm_code")\
.setDistanceFunction("EUCLIDEAN")
resolver2chunk = Resolution2Chunk()\
.setInputCols(["rxnorm_code"]) \
.setOutputCol("resolver2chunk")
chunkMapper = ChunkMapperModel.pretrained("rxnorm_treatment_mapper", "en", "clinical/models")\
.setInputCols(["resolver2chunk"])\
.setOutputCol("mappings")\
.setRels(["treatment"])
pipeline = Pipeline(
stages = [
documentAssembler,
sbert_embedder,
rxnorm_resolver,
resolver2chunk,
chunkMapper
])
test_data = spark.createDataFrame([["Eviplera"], ["Zonalon 50 mg"], ["Rompun"], ["Glucovance"], ["Abbokinase"]]).toDF("text")
res= model.fit(test_data).transform(test_data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("ner_chunk")
val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")
.setInputCols("ner_chunk")
.setOutputCol("sbert_embeddings")
.setCaseSensitive(False)
val rxnorm_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_rxnorm_augmented", "en", "clinical/models")
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("rxnorm_code")
.setDistanceFunction("EUCLIDEAN")
val resolver2chunk = new Resolution2Chunk()\
.setInputCols(["rxnorm_code"]) \
.setOutputCol("resolver2chunk")
val chunkMapper = ChunkMapperModel.pretrained("rxnorm_treatment_mapper", "en", "clinical/models")
.setInputCols("resolver2chunk")
.setOutputCol("mappings")
.setRels("action")
val pipeline = new Pipeline(stages = Array(
documentAssembler,
sbert_embedder,
rxnorm_resolver,
resolver2chunk,
chunkMapper
))
val data = Seq(Array("Eviplera", "Zonalon 50 mg", "Rompun", "Glucovance", "Abbokinase")).toDS.toDF("text")
val result= pipeline.fit(data).transform(data)
Results
+-------------+-----------+------------------------+---------+
|ner_chunk |rxnorm_code|treatment_mapping_result|relation |
+-------------+-----------+------------------------+---------+
|Eviplera |217010 |Osteoporosis |treatment|
|Zonalon 50 mg|103971 |Pain |treatment|
|Rompun |1536491 |Pain |treatment|
|Glucovance |284743 |Diabetes Mellitus |treatment|
|Abbokinase |204209 |Angiography |treatment|
+-------------+-----------+------------------------+---------+
Model Information
Model Name: | rxnorm_treatment_mapper |
Compatibility: | Healthcare NLP 5.2.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [ner_chunk] |
Output Labels: | [mappings] |
Language: | en |
Size: | 5.8 MB |