Mapping UMLS Codes with Their Corresponding LOINC Codes

Description

This pretrained model maps UMLS codes to corresponding LOINC codes.

Predicted Entities

loinc_code

Copy S3 URI

How to use

documentAssembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("ner_chunk")

sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")\
    .setInputCols(["ner_chunk"])\
    .setOutputCol("sbert_embeddings")\
    .setCaseSensitive(False)

umls_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_umls_clinical_drugs", "en", "clinical/models")\
    .setInputCols(["sbert_embeddings"]) \
    .setOutputCol("umls_code")\
    .setDistanceFunction("EUCLIDEAN")

resolver2chunk = Resolution2Chunk()\
    .setInputCols(["umls_code"])\
    .setOutputCol("umls2chunk")

chunkerMapper = ChunkMapperModel.pretrained("umls_loinc_mapper", "en", "clinical/models")\
    .setInputCols(["umls2chunk"])\
    .setOutputCol("mappings")\

pipeline = Pipeline(stages = [
    documentAssembler,
    sbert_embedder,
    umls_resolver,
    resolver2chunk,
    chunkerMapper])


data = spark.createDataFrame([["acebutolol"]]).toDF("text")

mapper_model = pipeline.fit(data)
result= mapper_model.transform(data)  
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("ner_chunk")
	
val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")
    .setInputCols(Array("ner_chunk"))
    .setOutputCol("sbert_embeddings")
    .setCaseSensitive(false)
	
val umls_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_umls_clinical_drugs","en","clinical/models")
    .setInputCols(Array("sbert_embeddings"))
    .setOutputCol("umls_code")
    .setDistanceFunction("EUCLIDEAN")
	
val resolver2chunk = new Resolution2Chunk()
    .setInputCols(Array("umls_code"))
    .setOutputCol("umls2chunk")
	
val chunkerMapper = ChunkMapperModel.pretrained("umls_loinc_mapper","en","clinical/models")
    .setInputCols(Array("umls2chunk"))
    .setOutputCol("mappings")
	
val Pipeline(stages = Array(
    documentAssembler,
    sbert_embedder,
    umls_resolver,
    resolver2chunk,
    chunkerMapper))


val data = Seq("acebutolol").toDF("text")

val mapper_model = pipeline.fit(data)
result= mapper_model.transform(data)

Results

+----------+---------+----------+
|chunk     |umls_code|loinc_code|
+----------+---------+----------+
|acebutolol|C0000946 |LP16015-7 |
+----------+---------+----------+

Model Information

Model Name: umls_loinc_mapper
Compatibility: Healthcare NLP 5.2.1+
License: Licensed
Edition: Official
Input Labels: [ner_chunk]
Output Labels: [mappings]
Language: en
Size: 2.9 MB